Triglycerides (or triacylglycerols) represent the major form of stored energy in eukaryotes. Triglyceride synthesis has been assumed to occur primarily through acyl CoA:diacylglycerol transferase (Dgat), a microsomal enzyme that catalyses the final and only committed step in the glycerol phosphate pathway. Therefore, Dgat has been considered necessary for adipose tissue formation and essential for survival. Here we show that Dgat-deficient (Dgat-/-) mice are viable and can still synthesize triglycerides. Moreover, these mice are lean and resistant to diet-induced obesity. The obesity resistance involves increased energy expenditure and increased activity. Dgat deficiency also alters triglyceride metabolism in other tissues, including the mammary gland, where lactation is defective in Dgat-/- females. Our findings indicate that multiple mechanisms exist for triglyceride synthesis and suggest that the selective inhibition of Dgat-mediated triglyceride synthesis may be useful for treating obesity.
During treatment of brain tumors, some head and neck tumors, and other diseases, like arteriovenous malformations, the normal brain is exposed to ionizing radiation. While high radiation doses can cause severe tissue destruction, lower doses can induce cognitive impairments without signs of overt tissue damage. The underlying pathogenesis of these impairments is not well understood but may involve the neural precursor cells in the dentate gyrus of the hippocampus. To assess the effects of radiation on cognitive function, 2-month-old mice received either sham treatment (controls) or localized X irradiation (10 Gy) to the hippocampus/cortex and were tested behaviorally 3 months later. Compared to controls, X-irradiated mice showed hippocampal-dependent spatial learning and memory impairments in the Barnes maze but not the Morris water maze. No nonspatial learning and memory impairments were detected. The cognitive impairments were associated with reductions in proliferating Ki-67-positive cells and Doublecortin-positive immature neurons in the subgranular zone (SGZ) of the dentate gyrus. This study shows significant cognitive impairments after a modest dose of radiation and demonstrates that the Barnes maze is particularly sensitive for the detection of radiation-induced cognitive deficits in young adult mice. The significant loss of proliferating SGZ cells and their progeny suggests a contributory role of reduced neurogenesis in the pathogenesis of radiation-induced cognitive impairments.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.