Online popularity has an enormous impact on opinions, culture, policy, and profits. We provide a quantitative, large scale, temporal analysis of the dynamics of online content popularity in two massive model systems: the Wikipedia and an entire country's Web space. We find that the dynamics of popularity are characterized by bursts, displaying characteristic features of critical systems such as fat-tailed distributions of magnitude and interevent time. We propose a minimal model combining the classic preferential popularity increase mechanism with the occurrence of random popularity shifts due to exogenous factors. The model recovers the critical features observed in the empirical analysis of the systems analyzed here, highlighting the key factors needed in the description of popularity dynamics.
In this study we investigate how social media shape the networked public sphere and facilitate communication between communities with different political orientations. We examine two networks of political communication on Twitter, comprised of more than 250,000 tweets from the six weeks leading up to the 2010 U.S. congressional midterm elections. Using a combination of network clustering algorithms and manually-annotated data we demonstrate that the network of political retweets exhibits a highly segregated partisan structure, with extremely limited connectivity between left- and right-leaning users. Surprisingly this is not the case for the user-to-user mention network, which is dominated by a single politically heterogeneous cluster of users in which ideologically-opposed individuals interact at a much higher rate compared to the network of retweets. To explain the distinct topologies of the retweet and mention networks we conjecture that politically motivated individuals provoke interaction by injecting partisan content into information streams whose primary audience consists of ideologically-opposed users. We conclude with statistical evidence in support of this hypothesis.
Every day millions of users are connected through online social networks, generating a rich trove of data that allows us to study the mechanisms behind human interactions. Triadic closure has been treated as the major mechanism for creating social links: if Alice follows Bob and Bob follows Charlie, Alice will follow Charlie. Here we present an analysis of longitudinal micro-blogging data, revealing a more nuanced view of the strategies employed by users when expanding their social circles. While the network structure affects the spread of information among users, the network is in turn shaped by this communication activity. This suggests a link creation mechanism whereby Alice is more likely to follow Charlie after seeing many messages by Charlie. We characterize users with a set of parameters associated with different link creation strategies, estimated by a Maximum-Likelihood approach. Triadic closure does have a strong effect on link formation, but shortcuts based on traffic are another key factor in interpreting network evolution. However, individual strategies for following other users are highly heterogeneous. Link creation behaviors can be summarized by classifying users in different categories with distinct structural and behavioral characteristics. Users who are popular, active, and influential tend to create traffic-based shortcuts, making the information diffusion process more efficient in the network. Categories and Subject Descriptors KeywordsLink creation, traffic, network evolution, information diffusion, shortcut, user behavior, social media, network structure Permission to make digital or hard copies of all or part of this work for personal or classroom use is granted without fee provided that copies are not made or distributed for profit or commercial advantage and that copies bear this notice and the full citation on the first page. Copyrights for components of this work owned by others than ACM must be honored. Abstracting with credit is permitted. To copy otherwise, or republish, to post on servers or to redistribute to lists, requires prior specific permission and/or a fee. Request permissions from permissions@acm.org.
Online social media are complementing and in some cases replacing person-to-person social interaction and redefining the diffusion of information. In particular, microblogs have become crucial grounds on which public relations, marketing, and political battles are fought. We introduce an extensible framework that will enable the real-time analysis of meme diffusion in social media by mining, visualizing, mapping, classifying, and modeling massive streams of public microblogging events. We describe a Web service that leverages this framework to track political memes in Twitter and help detect astroturfing, smear campaigns, and other misinformation in the context of U.S. political elections. We present some cases of abusive behaviors uncovered by our service. Finally, we discuss promising preliminary results on the detection of suspicious memes via supervised learning based on features extracted from the topology of the diffusion networks, sentiment analysis, and crowdsourced annotations.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.