Genes containing multiple coding mini-and microsatellite repeats are highly dynamic components of genomes. Frequent recombination events within these tandem repeats lead to changes in repeat numbers, which in turn alters the amino acid sequence of the corresponding protein. In bacteria and yeasts, the expansion of such coding repeats in cell wall proteins is associated with alterations in immunogenicity, adhesion, and pathogenesis. We hypothesized that identification of repeat-containing putative cell wall proteins in the human pathogen Aspergillus fumigatus may reveal novel pathogenesis-related elements. Here, we report that the genome of A. fumigatus contains as many as 292 genes with internal repeats. Fourteen of 30 selected genes showed size variation of their repeat-containing regions among 11 clinical A. fumigatus isolates. Four of these genes, Afu3g08990, Afu2g05150 (MP-2), Afu4g09600, and Afu6g14090, encode putative cell wall proteins containing a leader sequence and a glycosylphosphatidylinositol anchor motif. All four genes are expressed and produce variable-size mRNA encoding a discrete number of repeat amino acid units. Their expression was altered during development and in response to cell wall-disrupting agents. Deletion of one of these genes, Afu3g08990, resulted in a phenotype characterized by rapid conidial germination and reduced adherence to extracellular matrix suggestive of an alteration in cell wall characteristics. The Afu3g08990 protein was localized to the cell walls of dormant and germinating conidia. Our findings suggest that a subset of the A. fumigatus cell surface proteins may be hypervariable due to recombination events in their internal tandem repeats. This variation may provide the functional diversity in cell surface antigens which allows rapid adaptation to the environment and/or elusion of the host immune system.
Background and Purpose-We sought to determine the cerebroprotective potential of NAP, a synthetic octapeptide related to vasoactive intestinal peptide. Activity-dependent neuroprotective protein mediates some of the protective effects of vasoactive intestinal peptide. The neuroprotective NAP sequence is derived from activity-dependent neuroprotective protein. Methods-Spontaneously hypertensive rats underwent permanent middle cerebral artery occlusion by craniotomy and electrocoagulation. After dose-response and time-course experiments, the animals were injected with NAP (3 g/kg) or vehicle intravenously 1 hour after stroke onset. Another group of rats was injected with the D-amino acid isomer of NAP (D-NAP) and served as a negative control. Rats were examined for motor and behavioral deficits 24 hours to 30 days later, and infarct volumes were determined.
The ECM33/SPS2 family of glycosylphosphatidylinositol-anchored proteins plays an important role in maintaining fungal cell wall integrity and virulence. However, the precise molecular role of these proteins is unknown. In this work, AfuEcm33, the gene encoding the ECM33 homologue in the important pathogenic fungus Aspergillus fumigatus, has been cloned and its function analysed. It is shown that disruption of AfuEcm33 results in rapid conidial germination, increased cell-cell adhesion, resistance to the antifungal agent caspofungin and increased virulence in an immunocompromised mouse model for disseminated aspergillosis. These results suggest that the protein encoded by AfuEcm33 is involved in key aspects of cell wall morphogenesis and plays an important role in A. fumigatus virulence.
Our results indicate that moxifloxacin acts as an anti-inflammatory agent in monocytic cells stimulated with A. fumigatus conidia. Whether these effects may be protective as in the Candida pneumonia model is unknown and merits in vivo studies in models of pulmonary aspergillosis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.