Pollinator nutritional ecology provides insights into plant–pollinator interactions, coevolution, and the restoration of declining pollinator populations. Bees obtain their protein and lipid nutrient intake from pollen, which is essential for larval growth and development as well as adult health and reproduction. Our previous research revealed that pollen protein to lipid ratios (P:L) shape bumble bee foraging preferences among pollen host-plant species, and these preferred ratios link to bumble bee colony health and fitness. Yet, we are still in the early stages of integrating data on P:L ratios across plant and bee species. Here, using a standard laboratory protocol, we present over 80 plant species’ protein and lipid concentrations and P:L values, and we evaluate the P:L ratios of pollen collected by three bee species. We discuss the general phylogenetic, phenotypic, behavioral, and ecological trends observed in these P:L ratios that may drive plant–pollinator interactions; we also present future research questions to further strengthen the field of pollination nutritional ecology. This dataset provides a foundation for researchers studying the nutritional drivers of plant–pollinator interactions as well as for stakeholders developing planting schemes to best support pollinators.
Pollen plays a dual role as both a gametophyte and a nutritional reward for pollinators. Although pollen chemistry varies across plant species, its functional significance in pollination has remained obscure, in part because little is known about how floral visitors assess it. Bees rely on pollen for protein, but whether foragers evaluate its chemistry is unclear, as it is primarily consumed by larvae. We asked whether the chemical composition of pollen influences bumblebees' foraging behaviour. Using putatively sweet and bitter pollen blends, we found that chemical composition influenced two aspects of bee behaviour relevant to plant fitness: the amount of pollen collected and the likelihood of subsequently visiting a visually similar flower. These findings offer a new perspective on the nutritional ecology of plant-pollinator interactions, as they show that pollen's taste may mediate its collection and transfer.
Neonicotinoid pesticides can impair bees' ability to learn and remember information about flowers, critical for effective foraging. Although these effects on cognition may contribute to broader effects on health and performance, to date they have largely been assayed in simplified protocols that consider learning in a single sensory modality, usually olfaction. Given that real flowers display a variety of potentially useful signals, we assessed the effects of acute neonicotinoid exposure on multimodal learning in free-flying bumblebees. We found that neonicotinoid consumption differentially impacted learning of floral stimuli, impairing scent, but not colour, learning. These findings raise questions about the mechanisms by which pesticides might differentially impair sensory systems, with implications for how neonicotinoids affect multiple aspects of bee ecology.
Studies of herbivores and secondary consumer communities rarely incorporate a comprehensive characterization of primary producer trait variation, thus limiting our understanding of how plants mediate community assembly of consumers. We took advantage of recent technological developments for efficient generation of phytochemical, microbial and genomic data to characterize individual alfalfa plants (Medicago sativa; Fabaceae) growing in an old‐field, semi‐naturalized state for 770 traits (including 753 chemical features). Using random forest modelling, we investigated the effect of variation in these traits on arthropod and fungal assemblages while accounting for plant genetic structure. We found that traits indicative of plant vigour, including size, percentage of flowering stems and leaf area, were positively associated with arthropod richness and abundance. Most phytochemicals were, by comparison, poor predictors, although phytochemical diversity and several individual phenolic compounds were important. Plants with a higher proportion of flowering stems were hotspots of intertrophic interactions with higher species richness of secondary consumers. The effects of many traits on plant‐associated assemblages were best modelled as nonlinear functions, often incorporating threshold effects. Foliar fungal richness was not well predicted by our models, suggesting we have much to learn regarding the role of plant traits on phyllosphere fungi at small spatial scales. Our results support the need for characterization of multiple axes of plant phenotypes in studies of plant‐arthropod‐microbe communities and demonstrate the value of modern analytical techniques for understanding the nonlinear ways in which plant traits mediate the structure of associated biotic communities. A http://onlinelibrary.wiley.com/doi/10.1111/1365-2435.13060/suppinfo is available for this article.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.