Novel selective non-hydrogen-bonding DNA base pairs utilizing fluorinated nucleoside analogues have been investigated. Melting studies of DNA duplexes containing 2,3,4,5-tetrafluorobenzene and 4,5,6,7-tetrafluoroindole bases on opposite strands show greater stabilization of the duplex compared with nonfluorinated hydrocarbon controls. Overall, these hydrophobic analogues are destabilizing compared with natural base pairs but are stabilizing compared with natural base mismatches. Such selective pairing may be due to solvent avoidance of these hydrophobic structures, burying their surfaces within the duplex. Our findings suggest that polyfluoroaromatic bases might be employed as a new, selective base-pairing system orthogonal to the natural genetic system.
We describe selective "fluorous" effects in the active site of a DNA polymerase, by using nucleotide analogues whose pairing edges are perfluorinated. The 5'-triphosphate deoxynucleotide derivatives of DNA base analogues 2,3,4,5-tetrafluorobenzene ((F)B) and 4,5,6,7-tetrafluoroindole ((F)I), as well as hydrocarbon controls benzene (B) and indole (I), were synthesized and studied as substrates for the DNA Polymerase I Klenow fragment (KF exo-). Modified nucleotides were present in the DNA template or were supplied as nucleoside triphosphates in studies of the steady-state kinetics of single nucleotide insertion. When supplied opposite the non-natural bases in the template strand, the hydrophobic nucleoside triphosphates were incorporated by up to two orders of magnitude more efficiently than the natural deoxynucleoside triphosphates. The purine-like fluorinated indole nucleotide ((F)I) was the most efficiently inserted of the four hydrophobic analogues, with the most effective incorporation occurring opposite the pyrimidine-like tetrafluorobenzene ((F)B). In all cases, the polyfluorinated base pairs were more efficiently processed than the analogous hydrocarbon pairs. A preliminary test of polymerase extension beyond these pairs showed that only the (F)B base is appreciably extended; the inefficient extension is consistent with recently published data regarding other nonpolar base pairs. These results suggest the importance of hydrophobicity, stacking, and steric interactions in the polymerase-mediated replication of DNA base pairs that lack hydrogen bonds. These findings further suggest that the enhanced hydrophobicity of polyfluoroaromatic bases could be employed in the design of new, selective base pairs that are orthogonal to the natural Watson-Crick pairs used in replication.
Vaccinia DNA topoisomerase forms a covalent DNA-(3-phosphotyrosyl)-enzyme intermediate at a specific target site 5-C ؉5 C ؉4 C ؉3 T ؉2 T ؉1 p2N ؊1 in duplex DNA. Here we study the effects of nonpolar pyrimidine isosteres difluorotoluene (F) and monofluorotoluene (D) and the nonpolar purine analog indole at individual positions of the scissile and nonscissile strands on the rate of single-turnover DNA transesterification and the cleavage-religation equilibrium. Comparison of the effects of nonpolar base substitution to the effects of abasic lesions reported previously allowed us to surmise the relative contributions of base-stacking and polar edge interactions to the DNA transesterification reactions. For example, the deleterious effects of eliminating the ؉2T base on the scissile strand were rectified by introducing the nonpolar F isostere, whereas the requirement for the ؉1T base was not elided by F substitution. We impute a role for ؉1T in recruiting the catalytic residue Lys-167 to the active site. Topoisomerase is especially sensitive to suppression of DNA cleavage upon elimination of the ؉4G and ؉3G bases of the nonscissile strand. Indole provided little or no gain of function relative to abasic lesions. Inosine substitutions for ؉4G and ؉3G had no effect on transesterification rate, implying that the guanine exocyclic amine is not a critical determinant of DNA cleavage. Prior studies of 2-aminopurine and 7-deazaguanine effects had shown that the O6 and N7 of guanine were also not critical. These findings suggest that either the topoisomerase makes functionally redundant contacts with polar atoms (likely via Tyr-136, a residue important for precleavage active site assembly) or that it relies on contacts to N1 or N3 of the purine ring. The cleavage-religation equilibrium is strongly skewed toward trapping of the covalent intermediate by elimination of the ؉1A base of the nonscissile strand; the reaction equilibrium is restored by ؉1 indole, signifying that base stacking flanking the nick is critical for the religation step. Our findings highlight base isosteres as valuable tools for the analysis of proteins that act on DNA in a site-specific manner.Vaccinia virus DNA topoisomerase IB cleaves and rejoins one strand of the DNA duplex through a transient DNA-(3Ј-phosphotyrosyl)-enzyme intermediate formed at a specific pentapyrimidine target sequence, 5Ј-(T/C)CCTTp2 (1). (The Tp2 nucleotide is defined as the ϩ1 nucleotide.) Four conserved amino acids (Arg-130, Lys-167, Arg-223, and His-265) are responsible for catalyzing the attack of the active site tyrosine (Tyr-274) on the scissile phosphodiester to form the covalent intermediate (2-6). Biochemical and structural studies suggest that recognition of the 5Ј-CCCTT/3Ј-GGGAA sequence triggers conformational changes in the enzyme that recruit the full set of catalytic side chains into the active site, a process that entails protein contacts with several of the nucleotide bases and specific atoms of the phosphate backbone of DNA within and immediately flanking the C...
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.