The identification of some important retinal anatomical regions is a prerequisite for the computer aided diagnosis of several retinal diseases. In this paper, we propose a new adaptive method for the automatic segmentation of the optic disk in digital color fundus images, using mathematical morphology. The proposed method has been designed to be robust under varying illumination and image acquisition conditions, common in eye fundus imaging. Our experimental results based on two publicly available eye fundus image databases are encouraging, and indicate that our approach potentially can achieve a better performance than other known methods proposed in the literature. Using the DRIVE database (which consists of 40 retinal images), our method achieves a success rate of 100% in the correct location of the optic disk, with 41.47% of mean overlap. In the DIARETDB1 database (which consists of 89 retinal images), the optic disk is correctly located in 97.75% of the images, with a mean overlap of 43.65%.
An automatic method for segmenting skin lesions in conventional macroscopic images is presented. The images are acquired with conventional cameras, without the use of a dermoscope. Automatic segmentation of skin lesions from macroscopic images is a very challenging problem due to factors such as illumination variations, irregular structural and color variations, the presence of hair, as well as the occurrence of multiple unhealthy skin regions. To address these factors, a novel iterative stochastic region-merging approach is employed to segment the regions corresponding to skin lesions from the macroscopic images, where stochastic region merging is initialized first on a pixel level, and subsequently on a region level until convergence. A region merging likelihood function based on the regional statistics is introduced to determine the merger of regions in a stochastic manner. Experimental results show that the proposed system achieves overall segmentation error of under 10% for skin lesions in macroscopic images, which is lower than that achieved by existing methods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.