Simulation of charge transport in organic semiconducting materials requires the development of strategies for very fast yet accurate estimation of electronic coupling matrix elements for electron transfer between organic molecules (transfer integrals, Hab). A well-known relation that is often exploited for this purpose is the approximately linear dependence of electronic coupling with respect to the overlap of the corresponding diabatic state wave functions for a given donor-acceptor pair. Here we show that a single such relation can be established for a large number of different π-conjugated organic molecules. In our computational scheme the overlap of the diabatic state wave function is simply estimated by the overlap of the highest singly occupied molecular orbital of donor and acceptor, projected on a minimum valence shell Slater-type orbital (STO) basis with optimized Slater decay coefficients. After calibration of the linear relation, the average error in Hab as obtained from the STO orbital overlap is a factor of 1.9 with respect to wave function-theory validated DFT calculations for a diverse set of π-conjugated organic dimers including small arenes, arenes with S, N, and O heteroatoms, acenes, porphins, and buckyballs. The crucial advantage of the scheme is that the STO orbital overlap calculation is analytic. This leads to speedups of 6 orders of magnitude with respect to reference DFT calculations, with little loss of accuracy in the regime relevant to charge transport in organics.
We introduce a fragment orbital-based fewest switches surface hopping method, FOB-SH, designed to efficiently simulate charge carrier transport in strongly fluctuating condensed phase systems such as organic semiconductors and biomolecules. The charge carrier wavefunction is expanded and the electronic Hamiltonian constructed in a set of singly occupied molecular orbitals of the molecular sites that mediate the charge transfer. Diagonal elements of the electronic Hamiltonian (site energies) are obtained from a force field, whereas the off-diagonal or electronic coupling matrix elements are obtained using our recently developed analytic overlap method. We derive a general expression for the exact forces on the adiabatic ground and excited electronic state surfaces from the nuclear gradients of the charge localized electronic states. Applications to electron hole transfer in a model ethylene dimer and through a chain of ten model ethylenes validate our implementation and demonstrate its computational efficiency. On the larger system, we calculate the qualitative behaviour of charge mobility with change in temperature T for different regimes of the intermolecular electronic coupling. For small couplings, FOB-SH predicts a crossover from a thermally activated regime at low temperatures to a band-like transport regime at higher temperatures. For higher electronic couplings, the thermally activated regime disappears and the mobility decreases according to a power law. This is interpreted by a gradual loss in probability for resonance between the sites as the temperature increases. The polaron hopping model solved for the same system gives a qualitatively different result and underestimates the mobility decay at higher temperatures. Taken together, the FOB-SH methodology introduced here shows promise for a realistic investigation of charge carrier transport in complex organic, aqueous, and biological systems.
We investigate the performance of fewest switches surface hopping (SH) in describing electron transfer (ET) for a molecular donor-acceptor system. Computer simulations are carried out for a wide range of reorganisation energy (λ), electronic coupling strength (H) and driving force using our recently developed fragment orbital-based SH approach augmented with a simple decoherence correction. This methodology allows us to compute SH ET rates over more than four orders of magnitude, from the sub-picosecond to the nanosecond time regime. We find good agreement with semi-classical ET theory in the non-adiabatic ET regime. The correct scaling of the SH ET rate with electronic coupling strength is obtained and the Marcus inverted regime is reproduced, in line with previously reported results for a spin-boson model. Yet, we find that the SH ET rate falls below the semi-classical ET rate in the adiabatic regime, where the free energy barrier is in the order of kT in our simulations. We explain this by first signatures of non-exponential population decay of the initial charge state. For even larger electronic couplings (H = λ/2), the free energy barrier vanishes and ET rates are no longer defined. At this point we observe a crossover from ET on the vibronic time scale to charge relaxation on the femtosecond time scale that is well described by thermally averaged Rabi oscillations. The extension of the analysis from the non-adiabatic limit to large electronic couplings and small or even vanishing activation barriers is relevant for our understanding of charge transport in organic semiconductors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.