Today, tool life in high pressure die casting (HPDC) is of growing interest. A common agreement is that die life is primarily decided by the thermal load and temperature gradients in the die materials. Conformal cooling with the growth of additive manufacturing has raised interest as a means of extending die life. In the current paper, conformal cooling channels’ performance and effect on the thermal cycle in high-pressure die casting and rheocasting are investigated for conventional HPDC and semisolid processing. It was found that conformal cooling aids die temperature reduction, and the use of die spray may be reduced and support the die-life extension. For the die filling, the increased temperature was possibly counterproductive. Instead, it was found that the main focus for conformal cooling should be focused to manage temperature around the in-let bushing and possibly the runner system. Due to the possible higher inlet pressures for semisolid casting, particular benefits could be seen.
The current paper aimed to study the impact properties of additively manufactured maraging steel (1.2709) using laser powder bed fusion (PBF-L) processing. The specimens were fabricated using 3D Systems ProX 300 equipment under constant specific power input, or Andrew number. The interactions between the build strategy and parameters such as hatch spacing and scan speed was, and the impact strength and fracture were investigated. The impact energy anisotropy was also investigated in parallel and perpendicular to the build direction. Instrumented impact testing was performed, and the fractography supported that the fusion zone geometry dictated the fracture behavior. The influence from gaseous elements such as nitrogen, oxygen, and hydrogen was found insignificant at the levels found in the printed material.
Defects in cast metals remain a common problem in many areas of the foundry industry, particularly in the investment casting of large area, thin-walled components for aerospace applications. During previous research, the thermophysical properties, density and porosity of a fibre reinforced ceramic investment casting mould were determined using several experimental techniques. Without verification, these experimental results remain nothing more than educated guesswork. The purpose of this study is to verify previous results and to more fully characterise the ceramic mould material with complementary measurements. A commercially available computational fluid dynamic (CFD) simulation package, Flow-3D®, was used in conjunction with a full-scale Ni-superalloy (IN718) casting to assess the accuracy of these results. By placing thermocouples strategically across the mould thickness, temperature profiles were determined and compared directly to predicted profiles extracted from the simulation by a custom-written Python script.
The current paper aims to study the impact properties of additively manufactured Maraging steel (1.2709) using laser powder bed fusion (PBF-L) processing. The specimens were manufactured using 3Dsystems ProX 300 equipment under constant specific power input, or Andrew Number. The interactions between the build strategy and parameters, such as Hatch spacing and Scan speed was, and the impact strength and fracture were investigated. The Impact energy anisotropy was also investigated parallel and perpendicular to the build direction. Instrumented impact testing was performed, and the fractography supported that the fusion zone geometry dictated the fracture behaviour. The influence from gaseous elements such as Nitrogen, Oxygen and Hydrogen was found insignificant at the levels found in the printed material.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.