Nearly 70 new Nd isotope analyses are presented for plutonic orthogneisses from the Grenvillian Central Metasedimentary Belt (CMB) in order to test a back-arc aulacogen model for its origin. Nd isotope signatures of metaplutonic rocks are used as probes of the formation age of the crust at depth, revealing sharp boundaries between old crustal blocks and juvenile (1.2–1.35 Ga) Elzevirian-age crust. Firstly, a hidden block of old crustal basement is revealed between areas of juvenile crust south of Douglas, Ontario. Secondly, TDM ages refine the boundary between juvenile crust and old basement (1.35–1.55 Ga) within the Weslemkoon batholith, showing this pluton to be a polygenetic stitching pluton that straddles a hidden crustal boundary. Finally, the CMB boundary zone is shown to form a sharp age boundary between juvenile and old crustal domains, and is interpreted as a reactivated rift-bounding normal fault. When the distribution of rift-related alkaline rocks is compared with these crustal boundaries, the Bancroft nepheline syenite suite is centrally located in a juvenile ensimatic zone between blocks of old basement. Such a location, near the axis of a juvenile crustal segment, implies emplacement late in the rifting process. Similarly, the Blue Mountain nepheline syenite appears to post-date an earlier rifting event to the southeast. Hence, a multi-stage model is proposed for the evolution of a back-arc aulacogen, which is consistent with the distribution of marble and volcanic/plutonic units in the CMB. The model places the Bancroft nepheline syenites in a precise plate tectonic context for the first time.
Three-dimensional visualization of subsurface geological boundaries can help researchers gain a better understanding of complex crustal structures in ancient orogenic belts such as the Grenville Province of Ontario, Canada. In this article, the geological structure of the Parry Sound Domain is visualized using SketchUp, with geological control from a regional gravity survey, Lithoprobe seismic transects line 30 and 31, and surface geological boundaries. The multilobed structure of the Parry Sound Domain is part of a tectonic outlier that lies on top of an orogenic thrust stack. Each of the three lobes exhibits a steeper-dipping west side to depth and a shallowly dipping east side to depth. Prior interpretations of the Parry Sound Domain's subsurface structure are modified on the grounds of a multi-disciplinary approach. Three-dimensional visualization of the Parry Sound Domain will improve the current understanding of the subsurface structure in the south-western Grenville Province.
The Grenville Province forms the exhumed remnants of a 1.1 Ga collisional orogeny that telescoped an older continental margin. Terranes with distinct crustal formation ages can be mapped using Nd isotopes, revealing a ramp–flat thrust structure. The ramp is identified by the presence of retrogressed eclogites, and its trajectory is refined using Nd model ages. The main allochthon is locally overlain by the Parry Sound klippe, but is also underlain by a tectonic duplex. Northwest-directed nappes represent remnants of a corrugated thrust sheet, but a ring-shaped remnant was also preserved where the thrust sheet was down-buckled under the dense rocks of Parry Sound domain.
Nd isotope analyses are presented for granitoid rocks from the western part of Frontenac Terrane in the Grenville Province of Ontario. TDM ages show no correlation with the silica content of the rocks, but instead correlate with geographical location, suggesting that the TDM ages are indicative of regional crustal formation age, and do not result from mixing between sources with different provenance ages. Based on these observations, we identify a new crustal age boundary that follows the Desert Lake – Canoe Lake fault and the Rideau Lake fault, and hence a new juvenile crustal block (Westport domain). This domain is identified as part of the ensimatic back-arc rift zone that formed the juvenile segment of the Central Metasedimentary Belt in Ontario. However, additional sampling along the Ottawa River suggests that the juvenile Westport domain does not extend into Quebec. Instead, a narrower ensialic rift zone is represented by the Marble domain in Quebec. Based on comparison with the Taupo volcanic zone and the northern Red Sea as modern analogues, we suggest that the transition from a wide ensimatic rift zone in Ontario to a narrow ensialic rift in Quebec was accommodated by transtensional motion along a zone of diffuse shear east of Ottawa.
8Over fifty new Nd isotope analyses are presented for high-grade orthogneisses from 9 Algonquin Park and surrounding region in order to map major Grenvillian thrust boundaries. Nd 10 model ages display a consistent geographical pattern that allows detailed mapping of the 11 boundary between the Algonquin and Muskoka domains, here interpreted as the local trajectory 12 of the Ottawan-age Allochthon Boundary Thrust (ABT). The ABT is underlain by a domain with 13 Paleoproterozoic Nd model ages, interpreted as a tectonic duplex entrained onto the base of the 14 main allochthon. The boundaries determined using Nd isotope mapping are consistent with field 15 mapping and with remotely sensed aeromagnetic and digital elevation data. The precise location 16 of the ABT can be observed in a road-cut on Highway 60, on the north shore of the Lake of Two
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.