Live-subject microscopies, including microendoscopy and other related technologies, offer promise for basic biology research as well as the optical biopsy of disease in the clinic. However, cellular resolution generally comes with the trade-off of a microscopic field-of-view. Microimage mosaicking enables stitching many small scenes together to aid visualization, quantitative interpretation, and mapping of microscale features, for example, to guide surgical intervention. The development of hyperspectral and multispectral systems for biomedical applications provides motivation for adapting mosaicking algorithms to process a number of simultaneous spectral channels. We present an algorithm that mosaics multichannel video by correlating channels of consecutive frames as a basis for efficiently calculating image alignments. We characterize the noise tolerance of the algorithm by using simulated video with known ground-truth alignments to quantify mosaicking accuracy and speed, showing that multiplexed molecular imaging enhances mosaic accuracy by leveraging observations of distinct molecular constituents to inform frame alignment. A simple mathematical model is introduced to characterize the noise suppression provided by a given group of spectral channels, thus predicting the performance of selected subsets of data channels in order to balance mosaic computation accuracy and speed. The characteristic noise tolerance of a given number of channels is shown to improve through selection of an optimal subset of channels that maximizes this model. We also demonstrate that the multichannel algorithm produces higher quality mosaics than the analogous single-channel methods in an empirical test case. To compensate for the increased data rate of hyperspectral video compared to single-channel systems, we employ parallel processing via GPUs to alleviate computational bottlenecks and to achieve real-time mosaicking even for video-rate multichannel systems anticipated in the future. This implementation paves the way for real-time multichannel mosaicking to accompany next-generation hyperspectral and multispectral video microscopy.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.