The synthesis and characterization of the first BODIPY appended to the five-membered heterocylic tellurophene [Te] moiety is reported. By incorporating tellurophene at the meso position, the tellurophene-appended boron-dipyrromethene dye (BODIPY) acts as a multimodal agent, becoming a potent photosensitizer with a mass cytometry tag. To synthesize the compound, we developed a method to enable late-stage Suzuki–Miyaura coupling by preparing and isolating tellurophene-2-BPin in a one-step procedure from the parent tellurophene. Coupling to a meso-substituted BODIPY functionalized with a pendant aryl bromide provides the desired tellurophene-appended BODIPY. This compound demonstrated a singlet oxygen quantum yield of 0.26 ± 0.01 and produced a light dose-dependent cytotoxicity with nanomolar IC50 values against 2D cultured HeLa cells and high efficacy against 3D cultured HeLa tumor spheroids, proving to be a strong photosensitizer. The presence of the tellurophene moiety could be detected using mass cytometry, thus showcasing the ability of a tellurophene-appended BODIPY as a novel photodynamic-therapy–mass-cytometry theranostic agent.
Reported herein are the synthesis and characterization of BODIPYs bearing heterocycles at boron. To synthesize this series, various chalcogenophenes (furan, thiophene, selenophene, and tellurophene) were lithiated and then used as nucleophiles to attack the boron center of a parent F-BODIPY. Compounds in the series were compared with respect to their photophysical and structural properties, and trends were discussed. By virtue of the "heavy atom effect", as the mass of the heterocycle appended to the BODIPY core increases, compounds exhibit a higher singlet oxygen quantum yield. The BODIPY with tellurophene at boron exhibits the highest quantum yield (Φ Δ = 0.68) in the series and reduced emission (Φ f = 0.01).
Gemini surfactants are composed of two hydrocarbon tails with corresponding polar headgroups, linked via a covalent spacer. The synthesis of these surfactants is a very active area of research due to their application as catalysts and other applied areas of study. The modification of green microwave techniques developed in our research on ionic liquids has resulted in the significant improvement of the synthesis of N,N ′-bis(dimethylalkyl)-α,ω-alkanediammonium dibromide (m–s–m type) symmetrical gemini surfactants. This approach utilizes a remarkably more economical, green, and sustainable methodology for the production of symmetrical gemini surfactants that can be utilized in numerous commercial applications. The improved synthetic approach of these gemini surfactants has led to the characterization of their crystalline packing for the first time ever using X-ray crystallographic analysis.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.