Summary The continuous development and application of technology for genetic improvement is a key element for advancing sheep production in the United States. The US sheep industry has contracted over time but appears to be at a juncture where a greater utilization of technology can facilitate industry expansion to new markets and address inefficiencies in traditional production practices. Significant transformations include the increased value of lamb in relation to wool, and a downtrend in large‐scale operations but a simultaneous rise in small flocks. Additionally, popularity of hair breeds not requiring shearing has surged, particularly in semi‐arid and subtropical US environments. A variety of domestically developed composite breeds and newly established technological approaches are now widely available for the sheep industry to use as it navigates these ongoing transformations. These genetic resources can also address long‐targeted areas of improvement such as growth, reproduction and parasite resistance. Moderate progress in production efficiency has been achieved by producers who have employed estimated breeding values, but widespread adoption of this technology has been limited. Genomic marker panels have recently shown promise for reducing disease susceptibility, identifying parentage and providing a foundation for marker‐assisted selection. As the ovine genome is further explored and genomic assemblies are improved, the sheep research community in the USA can capitalize on new‐found information to develop and apply genetic technologies to improve the production efficiency and profitability of the sheep industry.
Summary Selection for performance in diverse production settings has resulted in variation across sheep breeds worldwide. Although sheep are an important species to the United States, the current genetic relationship among many terminal sire breeds is not well characterized. Suffolk, Hampshire, Shropshire and Oxford (terminal) and Rambouillet (dual purpose) sheep (n = 248) sampled from different flocks were genotyped using the Applied Biosystems Axiom Ovine Genotyping Array (50K), and additional Shropshire sheep (n = 26) using the Illumina Ovine SNP50 BeadChip. Relationships were investigated by calculating observed heterozygosity, inbreeding coefficients, eigenvalues, pairwise Wright’s FST estimates and an identity by state matrix. The mean observed heterozygosity for each breed ranged from 0.30 to 0.35 and was consistent with data reported in other US and Australian sheep. Suffolk from two different regions of the United States (Midwest and West) clustered separately in eigenvalue plots and the rectangular cladogram. Further, divergence was detected between Suffolk from different regions with Wright’s FST estimate. Shropshire animals showed the greatest divergence from other terminal breeds in this study. Admixture between breeds was examined using admixture, and based on cross‐validation estimates, the best fit number of populations (clusters) was K = 6. The greatest admixture was observed within Hampshire, Suffolk, and Shropshire breeds. When plotting eigenvalues, US terminal breeds clustered separately in comparison with sheep from other locations of the world. Understanding the genetic relationships between terminal sire breeds in sheep will inform us about the potential applicability of markers derived in one breed to other breeds based on relatedness.
Functional annotation of the bovine genome was performed by characterizing the spectrum of RNA transcription using a multi-omics approach, combining long- and short-read transcript sequencing and orthogonal data to identify promoters and enhancers and to determine boundaries of open chromatin. A total number of 171,985 unique transcripts (50% protein-coding) representing 35,150 unique genes (64% protein-coding) were identified across tissues. Among them, 159,033 transcripts (92% of the total) were structurally validated by independent datasets such as PacBio Iso-seq, ONT-seq, de novo assembled transcripts from RNA-seq, or Ensembl and NCBI gene sets. In addition, all transcripts were supported by extensive independent data from different technologies such as WTTS-seq, RAMPAGE, ChIP-seq, and ATAC-seq. A large proportion of identified transcripts (69%) were novel, of which 87% were produced by known genes and 13% by novel genes. A median of two 5' untranslated regions was detected per gene, an increase from Ensembl and NCBI annotations (single). Around 50% of protein-coding genes in each tissue were bifunctional and transcribed both coding and noncoding isoforms. Furthermore, we identified 3,744 genes that functioned as non-coding genes in fetal tissues, but as protein-coding genes in adult tissues. Our new bovine genome annotation extended more than 11,000 known gene borders compared to Ensembl or NCBI annotations. The resulting bovine transcriptome was integrated with publicly available QTL data to study tissue-tissue interconnection involved in different traits and construct the first bovine trait similarity network. These validated results show significant improvement over current bovine genome annotations.
The anthelmintic resistance of gastrointestinal nematodes (GINs) poses a significant threat to sheep worldwide, but genomic selection can serve as an alternative to the use of chemical treatment as a solution for parasitic infection. The objective of this study is to conduct genome-wide association studies (GWASs) to identify single nucleotide polymorphisms (SNPs) in Rambouillet (RA) and Dorper × White Dorper (DWD) lambs associated with the biological response to a GIN infection. All lambs were genotyped with a medium-density genomic panel with 40,598 markers used for analysis. Separate GWASs were conducted using fecal egg counts (FECs) from lambs (<1 year of age) that acquired their artificial infections via an oral inoculation of 10,000 Haemonchus contortus larvae (n = 145) or naturally while grazing on pasture (n = 184). A GWAS was also performed for packed cell volume (PCV) in artificially GIN-challenged lambs. A total of 26 SNPs exceeded significance and 21 SNPs were in or within 20 kb of genes such as SCUBE1, GALNT6, IGF1R, CAPZB and PTK2B. The ontology analysis of candidate genes signifies the importance of immune cell development, mucin production and cellular signaling for coagulation and wound healing following epithelial damage in the abomasal gastric pits via H. contortus during GIN infection in lambs. These results add to a growing body of the literature that promotes the use of genomic selection for increased sheep resistance to GINs.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.