Disclaimer Informa UK Limited, trading as Taylor & Francis Group, make every effort to ensure the accuracy of all the information (the "Content") contained in our publications. However, Informa UK Limited, trading as Taylor & Francis Group, our agents, and our licensors make no representations or warranties whatsoever as to the accuracy, completeness, or suitability for any purpose of the Content. Any opinions and views expressed in this publication are the opinions and views of the authors, and are not the views of or endorsed by Informa UK Limited, trading as Taylor & Francis Group. The accuracy of the Content should not be relied upon and should be independently verified with primary sources of information. Informa UK Limited, trading as Taylor & Francis Group, shall not be liable for any losses, actions, claims, proceedings, demands, costs, expenses, damages, and other liabilities whatsoever or howsoever caused arising directly or indirectly in connection with, in relation to or arising out of the use of the Content.
Abstract. This paper reviews the state of the art in storm surge forecasting and its particular application in the northern Adriatic Sea. The city of Venice already depends on operational storm surge forecasting systems to warn the population and economy of imminent flood threats, as well as help to protect the extensive cultural heritage. This will be more important in the future, with the new mobile barriers called MOSE (MOdulo Sperimentale Elettromeccanico, Experimental Electromechanical Module) that will be completed by 2021. The barriers will depend on accurate storm surge forecasting to control their operation. In this paper, the physics behind the flooding of Venice is discussed, and the state of the art of storm surge forecasting in Europe is reviewed. The challenges for the surge forecasting systems are analyzed, especially in view of uncertainty. This includes consideration of selected historic extreme events that were particularly difficult to forecast. Four potential improvements are identified: (1) improve meteorological forecasts, (2) develop ensemble forecasting, (3) assimilation of water level measurements and (4) develop a multimodel approach.
Multi-model ensembles for sea surface temperature (SST), sea surface salinity (SSS), sea surface currents (SSC), and water transports have been developed for the North Sea and the Baltic Sea using outputs from several operational ocean forecasting models provided by different institutes. The individual models differ in model code, resolution, boundary conditions, atmospheric forcing, and data assimilation. The ensembles are produced on a daily basis. Daily statistics are calculated for each parameter giving information about the spread of the forecasts with standard deviation, ensemble mean and median, and coefficient of variation. High forecast uncertainty, i.e., for SSS and SSC, was found in the Skagerrak, Kattegat (Transition Area between North Sea and Baltic Sea), and the Norwegian Channel. Based on the data collected, longer-term statistical analyses have been done, such as a comparison with satellite data for SST and evaluation of the deviation between forecasts in temporal and spatial scale. Regions of high forecast uncertainty for SSS and SSC have been detected in the Transition Area and the Norwegian Channel where a large spread between the models might evolve due to differences in simulating the frontal structures and their movements. A distinct seasonal pattern could be distinguished for SST with high uncertainty between the forecasts during summer. Forecasts with relatively high deviation from the multi-model ensemble (MME) products or the other individual forecasts were detected for each region and each parameter. The comparison with satellite data showed that the error of the MME products is lowest compared to those of the ensemble members.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.