Introduction Post-operative delirium (POD) is associated with increased morbidity and mortality rates in older patients. Neuroinflammation, the activation of the intrinsic immune system of the brain, seems to be one of the mechanisms behind the development of POD. The aim of this study was to explore the association between the perioperative inflammatory response and the development of POD in a cohort of older oncological patients in need for surgery. Methods In this prospective cohort study, patients 65 years and older in need for oncologic surgery were included. Inflammatory markers C-reactive protein (CRP), interleukin-1 beta (IL-1β), IL-6, IL10 and Neutrophil gelatinase-associated lipocalin (NGAL) were measured in plasma samples pre- and post-operatively. Delirium Observation Screening Scale (DOS) was used as screening instrument for POD in the first week after surgery. In case of positive screening, diagnosis of POD was assessed by a clinician. Results Between 2010 and 2016, plasma samples of 311 patients with median age of 72 years (range 65–89) were collected. A total of 38 (12%) patients developed POD in the first week after surgery. The perioperative increase in plasma levels of IL-10 and NGAL were associated with POD in multivariate logistic regression analysis (OR 1.33 [1.09–1.63] P = 0.005 and OR 1.30 [1.03–1.64], P = 0.026, respectively). The biomarkers CRP, IL-1β and IL-6 were not significantly associated with POD. Conclusions Increased surgery-evoked inflammatory responses of IL-10 and NGAL are associated with the development of POD in older oncological patients. The outcomes of this study contribute to understanding the aetiology of neuroinflammation and the development of POD.
Background Altered cholinergic innervation plays a putative role in cognitive impairment in Parkinson's disease (PD) at least in advanced stages. Identification of the relationship between cognitive impairment and cholinergic innervation early in the disease will provide better insight into disease prognosis and possible early intervention. Objective The aim was to assess regional cholinergic innervation status in de novo patients with PD, with and without cognitive impairment. Methods Fifty‐seven newly diagnosed, treatment‐naive, PD patients (32 men, mean age 64.6 ± 8.2 years) and 10 healthy controls (5 men, mean age 54.6 ± 6.0 years) were included. All participants underwent cholinergic [18F]fluoroethoxybenzovesamicol positron emission tomography and detailed neuropsychological assessment. PD patients were classified as either cognitively normal (PD‐NC) or mild cognitive impairment (PD‐MCI). Whole brain voxel‐based group comparisons were performed. Results Results show bidirectional cholinergic innervation changes in PD. Both PD‐NC and PD‐MCI groups showed significant cortical cholinergic denervation compared to controls (P < 0.05, false discovery rate corrected), primarily in the posterior cortical regions. Higher‐than‐normal binding was most prominent in PD‐NC in both cortical and subcortical regions, including the cerebellum, cingulate cortex, putamen, gyrus rectus, hippocampus, and amygdala. Conclusion Altered cholinergic innervation is already present in de novo patients with PD. Posterior cortical cholinergic losses were present in all patients independent of cognitive status. Higher‐than‐normal binding in cerebellar, frontal, and subcortical regions in cognitively intact patients may reflect compensatory cholinergic upregulation in early‐stage PD. Limited or failing cholinergic upregulation may play an important role in early, clinically evident cognitive impairment in PD. © 2022 The Authors. Movement Disorders published by Wiley Periodicals LLC on behalf of International Parkinson and Movement Disorder Society
Trajectories of fatigue, psychological distress and coping styles after mild traumatic brain injury: a six-month prospective cohort study, Archives of Physical Medicine and Rehabilitation (2021), doi:
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.