Abstract:The pentacyclic peptide antibiotic nisin, produced by Lactococcus lactis is ubiquitously applied as a food preservative. We previously demonstrated that the truncated nisin-(1-22) has only 10-fold lower activity than nisin. Here we aimed at further developing this tricyclic nisin analog to reach activity comparable to that of nisin. Our data demonstrate that: (1) ring A has a large mutational freedom; (2) the composition of residues 20-22 strongly affects production levels of nisin-(1-22); (3) a positively charged C-terminus of nisin-(1-22) significantly enhances its antimicrobial activity; (4) nisin-(1-22) inhibits in vitro growth of a target strain using different dynamics than nisin.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.