An analysis of irreversibilities generated due to combustion in an adiabatic combustor burning wood was conducted. This was done for a reactant mixture varying from a rich to a lean mixture. A non-adiabatic non-premixed combustion model of a numerical code was used to simulate the combustion process where the solid fuel was modelled by using the ultimate analysis data. The entropy generation rates due to the combustion and frictional pressure drop processes were computed to eventually arrive at the irreversibilities generated. It was found that the entropy generation rate due to frictional pressure drop was negligible when compared to that due to combustion. It was also found that a minimum in irreversibilities generated was achieved when the Air-Fuel mass ratio was 4.9, which corresponds to an equivalence ratio of 1.64, which are lower than the respective Air-Fuel mass ratio and equivalence ratio for complete combustion with theoretical amount of air of 8.02 and 1.
In this paper an analytical model was developed to minimize the thermal resistance of an air cooled porous matrix made up of solid spheres with internal heat generation. This was done under the assumption of local thermal equilibrium. The analytical solution of the optimum sphere diameter was found to be independent of the heat generation rate of the solid spheres, but was dependent on the applied pressure drop and fluid properties. The analytical model compared very well to a numerical model found in a computational fluid dynamics code when air and liquid water properties were used for the fluid phase and wood and silica/sand properties were used for the solid phase.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.