A procedure for the determination of volatile compounds derived from lipid oxidation of fish muscle samples is presented. Analytes are concentrated on a solid-phase microextraction fiber employed in the headspace mode (HS-SPME), and selectively determined using gas chromatography in combination with mass spectrometry (GC-MS). The influence of several parameters on the efficiency of microextraction such as type of fiber, volume of sample, time, temperature, salting-out effect and stirring was systematically investigated. A saline extraction of fish muscle followed by incubation on a Carboxen-polydimethylsiloxane fiber during 30min at 60 degrees C gave the most effective and accurate extraction of the analytes. Quantification of them was performed by MS in the selected ion monitoring mode and by the internal standard method. Satisfactory linearity, repeatability and quantification limits were achieved under these conditions. The method was applied to the determination of the volatile compounds associated to oxidation of Atlantic horse mackerel (Trachurus trachurus) minced muscle and excellent correlations were obtained with chemical indexes for monitoring lipid oxidation as peroxide value and thiobarbituric acid reactive substances. This combined technique is fast, simple, sensitive, inexpensive and useful to monitor target compounds associated to fish rancidity as 1-penten-3-ol, 2,3-pentanedione or 1-octen-3-ol.
In an emulsion of corn oil in water with the addition of caffeic acid (Caf-OH) and alpha-tocopherol (alpha-TOH), Caf-OH was found to be very active in delaying lipid oxidation without affecting significantly the kinetics for alpha-TOH degradation. In contrast, Caf-OH addition to fish muscle retarded both the degradation of endogenous alpha-TOH and the propagation of lipid oxidation, measured by peroxide value (PV) and thiobarbituric acid reactive substances (TBARS), with increasing effect with increasing Caf-OH addition (55.5-555.1 micromol/kg). Electron spin resonance (ESR) spectroscopy confirmed a higher capacity of Caf-OH to regenerate alpha-TOH via reduction of the alpha-tocopheroxyl radical compared to other cinnamic acid derivatives (o-coumaric, ferulic, and chlorogenic acids). Degradation of endogenous ascorbate (AscH(-)) was accelerated at higher concentration of Caf-OH in fish tissue, suggesting a role of AscH(-) in the regeneration of Caf-OH. These results indicate that the antioxidant mechanism of Caf-OH implies the protection of endogenous alpha-TOH localized in tissue membranes where lipid oxidation is initiated and, at the same time, Caf-OH regeneration by the endogenous AscH(-). These combined effects result in a stronger antioxidant protection against lipid oxidation by favoring, as a final point, the protection of alpha-TOH, which is suggested as the last defense of fish muscle against lipid oxidation.
Polyphenolic fractions extracted from pine (Pinus pinaster) bark, grape (Vitis vinifera) pomace, and witch hazel (Hamamelis virginiana) bark were selected for investigating the influence of the number of phenolic units, polymerization, and the content of esterified galloyl residues (galloylation) on their efficacy for inhibiting lipid oxidation in fish lipid enriched foodstuffs. Experiments carried out with nongalloylated pine bark fractions with different polymerization degrees demonstrated that the number of catechin residues per molecule modulates their reducing and chelating properties in solution. In real food systems such as bulk fish oil and fish oil-in-water emulsions, the efficacy against lipid oxidation was highly dependent on the physical location of the antioxidant at the oxidative sensitive sites. The lowest polymerized fractions were the most efficient in bulk fish oil samples, whereas proanthocyanidins with an intermediate polymerization degree showed the highest activity in fish oil-in-water emulsions. Galloylation did not influence the antioxidant effectiveness of proanthocyanidins in bulk fish oils. The presence of galloyl groups favored the antioxidant activity of the polyphenols in emulsions, although results indicated that a high degree of galloylation did not improve significantly the activity found with medium galloylated proanthocyanidins. The results obtained in this research provide useful information about the relationship between structure and antioxidant activity in order to design antioxidant additives with application in fish oil-enriched functional foods.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.