Toothed whales rely on sound to echolocate prey and communicate with conspecifics, but little is known about how extreme pressure affects pneumatic sound production in deep-diving species with a limited air supply. The short-finned pilot whale (Globicephala macrorhynchus) is a highly social species among the deep-diving toothed whales, in which individuals socialize at the surface but leave their social group in pursuit of prey at depths of up to 1000 m. To investigate if these animals communicate acoustically at depth and test whether hydrostatic pressure affects communication signals, acoustic DTAGs logging sound, depth and orientation were attached to 12 pilot whales. Tagged whales produced tonal calls during deep foraging dives at depths of up to 800 m. Mean call output and duration decreased with depth despite the increased distance to conspecifics at the surface. This shows that the energy content of calls is lower at depths where lungs are collapsed and where the air volume available for sound generation is limited by ambient pressure. Frequency content was unaffected, providing a possible cue for group or species identification of diving whales. Social calls may be important to maintain social ties for foraging animals, but may be impacted adversely by vessel noise.
Aim:The knowledge of a species biogeographical patterns greatly enhances our understanding of geographical ecology, which can improve identifying key conservation needs. Yet, this knowledge is still scarce for many marine top predators. Here, we aim to analyse movement patterns and spatial structuring of a large predator, the short-finned pilot whale Globicephala macrorhynchus, over a wide geographical area.Location: North-east Atlantic, in Macaronesian archipelagos (Azores, Madeira and Canaries) and Iberian Peninsula (Sagres). Methods:We used likelihood techniques to estimate residency times and transition probabilities and carried out social analysis from individual photographic
Toothed whales use a pneumatic sound generator to produce echolocation and communication sounds. Increasing hydrostatic pressure at depth influences the amplitude and duration of calls but not of echolocation clicks. Here we test the hypothesis that information transfer at depth might be facilitated by click‐based communication signals. Wild short‐finned pilot whales (27) instrumented with multisensor DTAGs produced four main types of communication signals: low‐ and medium‐frequency calls (median fundamental frequency: 1.7 and 2.9 kHz), two‐component calls (median frequency of the low and high frequency components: 2 and 9 kHz), and rasps (burst‐pulses with median interclick interval of 21 ms). Rasps can be confused with foraging buzzes, but rasps are shorter and slower, and are not associated with fast changes in body acceleration nor reduced acoustic output of buzzes, characteristic of prey capture attempts. Contrary to calls, the energy flux density of rasps was not significantly affected by depth. This, and a different information content, may explain the observed increase in the relative occurrence of rasps with respect to calls at depth, and supports the hypothesis that click‐based communication signals may facilitate communication under high hydrostatic pressure. However, calls are produced at depth also, indicating that they may carry additional information relevant for deep‐diving animals, including potential communication among whales diving at the same time in this highly social deep‐diving species.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.