Ninhydrin, i. e. the stable hydrate of the reactive species indanetrione, is a well-known compound used for the quantification of ammonia and amino acids. However, substituent effects on the reactivity of ninhydrin with nucleophiles are not described. In this work, the kinetics of the reaction of C4-and C5-substituted ninhydrins with urea was studied and monitored by 13 C-NMR. Surprisingly, the obtained results show that electron donating groups (EDGs) as well as electron withdrawing groups (EWGs) decrease the rate of the reaction. EDGs decrease the electrophilicity of indanetrione, resulting in slower overall kinetics than unsubstituted ninhydrin. The calculated Gibbs free energy differences for the dehydration of unsubstituted and substituted ninhydrins and the subsequent reaction with urea showed that the dehydration of the compounds is more sensitive to electronic effects than the subsequent reaction with urea. Therefore, although EWGs increase the electrophilicity of indanetrione, this is more than counterbalanced by an adverse shift of the hydration equilibrium towards the unreactive hydrate (i. e. ninhydrin), resulting in slower kinetics as well.[a] J. Scheme 1. The mechanism of reaction of ninhydrin with amino acids. R.d.s. = rate-determining step. 1 e = ninhydrin, Table 1 entry e.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.