Bone repair is a multi-dimensional process that requires osteogenic cells, an osteoconductive matrix, osteoinductive signalling, mechanical stability and vascularization. In clinical practice, bone substitute materials are being used for reconstructive purposes, bone stock augmentation, and bone repair. Over the last decade, the use of calcium phosphate (CaP) based bone substitute materials has increased exponentially. These bone substitute materials vary in composition, mechanical strength and biological mechanism of function, each having their own advantages and disadvantages. It is known that intrinsic material properties of CaP bone substitutes have a profound effect on their mechanical and biological behaviour and associated biodegradation. These material properties of bone substitutes, such as porosity, composition and geometry change the trade-off between mechanical and biological performance. The choice of the optimal bone substitutes is therefore not always an easy one, and largely depends on the clinical application and its associated biological and mechanical needs. Not all bone graft substitutes will perform the same way, and their performance in one clinical site may not necessarily predict their performance in another site. CaP bone substitutes unfortunately have yet to achieve optimal mechanical and biological performance and to date each material has its own trade-off between mechanical and biological performance. This review describes the effect of intrinsic material properties on biological performance, mechanical strength and biodegradability of CaP bone substitutes.
Introduction: Systematic reviews of economic evaluations are useful for synthesizing economic evidence about health interventions and for informing evidence-based decisions. Areas covered: As there is no detailed description of the methods for performing a systematic review of economic evidence, this paper aims to provide an overview of state-of-the-art methodology. This is laid out in a 5-step approach, as follows: step 1) initiating a systematic review; step 2) identifying (full) economic evaluations; step 3) data extraction, risk of bias and transferability assessment; step 4) reporting results; step 5) discussion and interpretation of findings. Expert commentary: The paper aims to help inexperienced reviewers and clinical practice guideline developers, but also to be a resource for experts in the field who want to check on current methodological developments.
ARTICLE HISTORY
Polymethylmethacrylate (PMMA) also referred as (acrylic) bone cement is a non-degradable biomaterial that has been used in clinical orthopedic practice for several decades. PMMA can be used in a plain formulation, but is often used in an antibiotic-loaded formulation in (primary and revision) arthroplasty and in treatment of orthopedic infections as prosthetic joint infections (PJI) and chronic osteomyelitis. In treatment of PJIs antibiotic-loaded PMMA is often used as a carrier material for local antibiotic delivery in addition to treatment with systemic antibiotics. In this case, the antibiotic-loaded PMMA is often used as a spacer or as a bead chain. Since the introduction of PMMA as an antibiotic carrier there is a tremendous amount of scientific and clinical papers published, which studied numerous different aspects of antibiotic-loaded PMMA. This paper will review the research regarding basic principles of antibiotic-loaded PMMA as mechanism of action, antibiotic-release capacities, choice of antibiotics and influences on mechanical properties of PMMA. Subsequently, concerns regarding the application of antibiotic-loaded PMMA, biofilm formation, antibiotic resistance and local or systemic toxicity will be discussed. In addition to these subjects, the role of antibiotic loaded PMMA in clinical treatment of PJIs and chronic osteomyelitis is discussed in the final part of this paper.
Nowadays, S53P4 bioactive glass is indicated as a bone graft substitute in various clinical applications. This review provides an overview of the current published clinical results on indications such as craniofacial procedures, grafting of benign bone tumour defects, instrumental spondylodesis, and the treatment of osteomyelitis. Given the reported results that are based on examinations, such as clinical examinations by the surgeons, radiographs, CT, and MRI images, S53P4 bioactive glass may be beneficial in the various reported applications. Especially in craniofacial reconstructions like mastoid obliteration and orbital floor reconstructions, in grafting bone tumour defects, and in the treatment of osteomyelitis very promising results are obtained. Randomized clinical trials need to be performed in order to determine whether bioactive glass would be able to replace the current golden standard of autologous bone usage or with the use of antibiotic containing PMMA beads (in the case of osteomyelitis).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.