Satellite remote sensing of precipitable water vapor (PWV) is essential for monitoring moisture in real time for weather applications, as well as tracking the long‐term changes in PWV for climate change trend detection. This study assesses the accuracies of the current satellite observing system, specifically the National Aeronautics and Space Administration (NASA) Atmospheric Infrared Sounder (AIRS) v6 PWV product and the European Organization for the Exploitation of Meteorological Satellite Studies (EUMETSAT) Infrared Atmospheric Sounding Interferometer (IASI) v6 PWV product, using ground‐based SuomiNet Global Positioning System (GPS) network as truth. Elevation‐corrected collocated matchups to each SuomiNet GPS station in North America and around the world were created, and results were broken down by station, ARM region, climate zone, and latitude zone. The greatest difference, exceeding 5%, between IASI and AIRS retrievals occurred in the tropics. Generally, IASI and AIRS fall within a 5% error in the PWV range of 20–40 mm (a mean bias less than 2 mm), with a wet bias for extremely low PWV values (less than 5 mm) and a dry bias for extremely high PWV values (greater than 50 mm). The operational IR satellite products are able to capture the mean PWV but degrade in the extreme dry and wet regimes.
Precipitable water vapor (PWV) observations from the National Center of Atmospheric Research (NCAR) SuomiNet networks of ground-based global positioning system (GPS) receivers and the National Oceanic and Atmospheric Administration (NOAA) Profiler Network (NPN) are used in the regional assessment of global climate models. Study regions in the U.S. Great Plains and Midwest highlight the differences among global climate model output from the Fourth Assessment Report (AR4) Special Report on Emissions Scenarios (SRES) A2 scenario in their seasonal representation of column water vapor and the vertical distribution of moisture. In particular, the Community Climate System model, version 3 (CCSM3) is shown to exhibit a dry bias of over 30% in the summertime water vapor column, while the Goddard Institute for Space Studies Model E20 (GISS E20) agrees well with PWV observations. A detailed assessment of vertical profiles of temperature, relative humidity, and specific humidity confirm that only GISS E20 was able to represent the summertime specific humidity profile in the atmospheric boundary layer (<3%) and thus the correct total column water vapor. All models show good agreement in the winter season for the region. Regional trends using station-elevation-corrected GPS PWV data from two complimentary networks are found to be consistent with null trends predicted in the AR4 A2 scenario model output for the period 2000–09. The time to detect (TTD) a 0.05 mm yr−1 PWV trend, as predicted in the A2 scenario for the period 2000–2100, is shown to be 25–30 yr with 95% confidence in the Oklahoma–Kansas region.
A high amount of precipitable water vapor (PWV) is a necessary requirement for heavy precipitation and extreme flooding events. This study determined the predicted shift in extreme PWV from a set of CMIP5 global climate models using the highest emission scenario over three different spatial resolutions (global, zonal, and regional) and four different case regions (India, China, Europe, and eastern United States). For the globe, the frequency of the extreme 1% of PWV events between 2006 and 2030 was predicted to increase by a median factor (herein called an X factor) of 9 by 2075–99. Areas of high PWV, like the tropics, tended toward higher factors. The annual median X factor for India, China, central Europe, and the eastern United States was 24, 17, 15, and 16, respectively. For India, the minimum median X factor was 10 during December–February (DJF) and the maximum was 48 during June–August (JJA). In China, the minimum median X factor (8) occurred during DJF, and the maximum was 42 in JJA. For Europe, DJF and September–November (SON) had the smallest median X factor of 15, whereas JJA had the largest median X factor of 30. The smallest median X factor for the eastern United States (11) occurred during March–May (MAM), whereas the largest median X factor (32) occurred in JJA. Regional X factors were significantly larger than global (1.5–2 times larger), illustrating the importance of regional assessments of extreme PWV. The mean trend in the extreme PWV was approximately linear for all regions with a slope of about 3% decade−1. Observations for 10 (20) years are needed for the extreme PWV to change by an amount that exceeds a 3% (5%) measurement error.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.