We study decidability problems for equivalence of probabilistic programs for a core probabilistic programming language over finite fields of fixed characteristic. The programming language supports uniform sampling, addition, multiplication, and conditionals and thus is sufficiently expressive to encode Boolean and arithmetic circuits. We consider two variants of equivalence: The first one considers an interpretation over the finite field F q , while the second one, which we call universal equivalence, verifies equivalence over all extensions F q k of F q . The universal variant typically arises in provable cryptography when one wishes to prove equivalence for any length of bitstrings, i.e., elements of F 2 k for any k . While the first problem is obviously decidable, we establish its exact complexity, which lies in the counting hierarchy. To show decidability and a doubly exponential upper bound of the universal variant, we rely on results from algorithmic number theory and the possibility to compare local zeta functions associated to given polynomials. We then devise a general way to draw links between the universal probabilistic problems and widely studied problems on linear recurrence sequences. Finally, we study several variants of the equivalence problem, including a problem we call majority, motivated by differential privacy. We also define and provide some insights about program indistinguishability, proving that it is decidable for programs always returning 0 or 1.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with đź’™ for researchers
Part of the Research Solutions Family.