A novel multi-scale finite element formulation for contact mechanics between nominally smooth but microscopically rough surfaces is herein proposed. The approach integrates the interface finite element method (FEM) for modelling interface interactions at the macro-scale with a boundary element method (BEM) for the solution of the contact problem at the micro-scale. The BEM is used at each integration point to determine the normal contact traction and the normal contact stiffness, allowing to take into account any desirable kind of rough topology, either real, e.g. obtained from profilometric data, or artificial, evaluated with the most suitable numerical or analytical approach. Different numerical strategies to accelerate coupling between FEM and BEM are discussed in relation to a selected benchmark test.
A computational approach that is based on interface finite elements with eMbedded Profiles for Joint Roughness (MPJR) is exploited in order to study the viscoelastic contact problems with any complex shape of the indenting profiles. The MPJR finite elements, previously developed for partial slip contact problems, are herein further generalized in order to deal with finite sliding displacements. The approach is applied to a case study concerning a periodic contact problem between a sinusoidal profile and a viscoelastic layer of finite thickness. In particular, the effect of using three different rheological models that are based on Prony series (with one, two, or three arms) to approximate the viscoelastic behaviour of a real polymer is investigated. The method allows for predicting the whole transient regime during the normal contact problem and the subsequent sliding scenario from full stick to full slip, and then up to gross sliding. The effects of the viscoelastic model approximation and of the sliding velocities are carefully investigated. The proposed approach aims at tackling a class of problems that are difficult to address with other methods, which include the possibility of analysing indenters of generic profile, the capability of simulating partial slip and gross slip due to finite slidings, and, finally, the possibility of simultaneously investigating dissipative phenomena, like viscoelastic dissipation and energy losses due to interface friction.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.