To improve the fidelity of large eddy simulation (LES) of spray jet dispersion, a dynamic subgrid dispersion model is proposed based on the Langevin-type stochastic framework to quantify the effective contribution of the stochastic component of the force as a function of the Stokes number related to the subgrid time scale, which is easily accessed by the LES closure model. The proposed model has two
coefficients that require calibration, which were obtained following a rigorous calibration procedure based on forward uncertainty quantification algorithms. The performance of the model is assessed by comparison against a reference direct numerical simulation (DNS) test case. The comparisons
for the spray analysis include averages of the number of droplets, mass source term, and droplet diameters conditioned on the vapor mass fraction, together with their Eulerian average at different axial locations. The results showed improved prediction of the particle clustering behavior near the nozzle exit observed in the DNS simulations.
The effects of different vortex breakdown states on the evaporation process characterizing air-acetone vapor swirling jets laden with liquid acetone droplets in the dilute regime are discussed based on results provided by direct numerical simulations. Adopting the point-droplet approximation, the carrier phase is solved using an Eulerian framework, whereas a Lagrangian tracking of the dispersed phase is used. Three test cases are investigated: one with fully-turbulent pipe inflow conditions and two with a laminar Maxworthy velocity profile at different swirl rates. Consequently, turbulent, bubble-type and regular conical vortex breakdown states are established. Following phenomenological and statistical analyses of both phases, a significant enhancement of the overall droplet evaporation process due to the onset of the conical vortex breakdown is observed due to the strongest centrifugal forces driving the entire liquid drops towards the low-saturation mixing layer of the jet. The effects of droplet inertia on evaporation are isolated through an additional set of simulations where liquid droplets are treated as Lagrangian tracers. While it is found that inertial effects contribute to enhanced vaporization near the mixing layer under bubble vortex breakdown conditions, droplet inertia plays a secondary role under both turbulent and conical vortex breakdown due to intense turbulent mixing and high centrifugal forces, respectively.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.