The extratropical transition (ET) of tropical cyclones (TCs) can significantly influence the evolution of the midlatitude flow. However, the interaction between recurving TCs and upstream upper-level troughs features a large and partly unexplained case-to-case variability. In this study, a synoptic, feature-based climatology of TC–trough interactions is constructed to discriminate recurving TCs that interact with decelerating and accelerating troughs. Upper-level troughs reducing their eastward propagation speed during the interaction with recurving TCs exhibit phase locking with lower-level temperature anomalies and are linked to pronounced downstream Rossby wave amplification. Conversely, accelerating troughs do not exhibit phase locking and are associated with a nonsignificant downstream impact. Irrotational outflow near the tropopause associated with latent heat release in regions of heavy precipitation near the transitioning storm can promote phase locking (via enhancement of trough deceleration) and further enhance the downstream impact (via advection of air with low potential vorticity in the direction of the waveguide). These different impacts affect the probability of atmospheric blocking at the end of the Pacific storm track, which is generally higher if a TC–trough interaction occurs in the western North Pacific. Blocking in the eastern North Pacific is up to 3 times more likely than climatology if an interaction between a TC and a decelerating trough occurs upstream, whereas no statistical deviation with respect to climatology is observed for accelerating troughs. The outlined results support the hypothesis that differences in phase locking can explain the observed variability in the downstream impact of ET.
This study provides the first climatological assessment of the impact of recurving North Atlantic tropical cyclones (TCs) on downstream precipitation extremes. The response is evaluated based on time-lagged composites for 146 recurving TCs between 1979 and 2013 and quantified by the area affected by precipitation extremes (PEA) in a domain shifted relative to the TC–jet interaction location, which often encompasses major parts of Europe. The statistical significance of the PEA response to the TCs is determined using a novel bootstrapping technique based on flow analogs. A statistically significant increase in PEA is found between lags +42 and +90 h after the TC–jet interaction, with a doubling of the PEA compared to analog cases without recurving TCs. A K-means clustering applied to the natural logarithm of potential vorticity fields [ln(PV)] around the TC–jet interaction points reveals four main flow configurations of North Atlantic TC–jet interactions. Two main mechanisms by which recurving TCs can foster precipitation extremes farther downstream emerge: 1) an “atmospheric river–like” mechanism, with anomalously high integrated vapor transport (IVT) downstream of the recurving TCs and 2) a “downstream-development” mechanism, with anomalously high IVT ahead of a downstream trough. Hereby, the analog bootstrapping technique separates the impact of the TC from that of the midlatitude flow’s natural evolution on the PEA formation. This analysis reveals an unequivocal effect of the TCs for the atmospheric river–like cases, while for the downstream-development cases, a substantial increase in PEA is also found in the analogs without a TC.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.