This article describes the development of a high power density Direct Formate Fuel Cell (DFFC) fed with potassium formate (KCOOH). The membrane electrode assembly (MEA) contains no platinum metal. The cathode catalyst is FeCo/C combined with a commercial anion exchange membrane (AEM). To enhance the power output and energy efficiency we have employed a nanostructured Pd/C-CeO 2 anode catalyst. The activity for the formate oxidation reaction (FOR) is enhanced when compared to a Pd/C catalyst with the same Pd loading. Fuel cell tests at 60 • C show a peak power density of almost 250 mW cm −2 . The discharge energy (14 kJ), faradic efficiency (89%) and energy efficiency (46%) were determined for a single fuel charge (30 mL of 4 M KCOOH and 4 M KOH). Energy analysis demonstrates that removal of the expensive KOH electrolyte is essential for the future development of these devices. To compensate we apply for the first time a polymeric ionomer in the catalyst layer of the anode electrode. A homopolymer is synthesized by the radical polymerization of vinyl benzene chloride followed by amination with 1,4-diazabicyclo[2.2.2]octane (DABCO). The energy delivered, energy efficiency and fuel consumption efficiency of DFFCs fed with 4 M KCOOH are doubled with the use of the ionomer.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.