An experimental investigation of primary and secondary crossflow instability developing in the boundary layer of a 45 • swept wing, at a chord Reynolds number of 2.17·10 6 is presented. Linear stability theory is applied for preliminary estimation of the flow stability while surface flow visualisation using fluorescent oil is employed to inspect the topological features of the transition region. Hot-wire anemometry is extensively used for the investigation of the developing boundary layer and identification of the statistical and spectral characteristics of the instability modes. Primary stationary as well as unsteady type-I (z-mode), type-II (y-mode) and type-III modes are detected and quantified. Finally, three-component, three-dimensional measurements of the transitional boundary layer are performed using tomographic particle image velocimetry. This research presents the first application of an optical experimental technique for this type of flow. Among the optical techniques tomographic velocimetry represents, to date, the most advanced approach allowing the investigation of spatially correlated flow structures in threedimensional fields. Proper orthogonal decomposition (POD) analysis of the captured flow fields is applied to this goal. The first POD mode features a newly reported structure related to low-frequency oscillatory motion of the stationary vortices along the spanwise direction. The cause of this phenomenon is only conjectured. Its effect on transition is considered negligible but, given the related high energy level, it needs to be accounted for in experimental investigations. Secondary instability mechanisms are captured as well. The type-III mode corresponds to low frequency primary travelling crossflow waves interacting with the stationary ones. It appears in the inner upwelling region of the stationary crossflow vortices and is characterised by elongated structures approximately aligned with the axis of the stationary waves. The type-I secondary instability consists instead of significantly inclined structures located at the outer upwelling region of the stationary vortices. The much narrower wavelength and higher advection velocity of these structures correlate with the higher-frequency content of this mode. The results of the investigation of both primary and secondary instability from the exploited techniques agree with and complement each other and are in line with existing literature. Finally, they present the first experimental observation of the secondary instability structures under natural flow conditions.
The present study investigates the mechanisms associated with tonal noise emission from a NACA 0012 aerofoil at moderate incidence (0• and 4• angle of attack) and with Reynolds numbers ranging from 100 000 to 270 000. Simultaneous time-resolved particle image velocimetry (PIV) of the aeroacoustic source region near the trailing edge and acoustic measurements in the far field are performed in order to establish the correspondence between the flow structure and acoustic emissions. Results of these experiments are presented and analysed in view of past research for a number of selected cases. Characteristics of the acoustic emission and principal features of the average flow field agree with data presented in previous studies on the topic. Time-resolved analysis shows that downstream convecting vortical structures, resulting from growing shear layer instabilities, coherently pass the trailing edge at a frequency equal to that of the dominant tone. Therefore, the scattering of the vortical structures and their associated wall pressure fluctuations are identified as tone generating mechanisms for the cases investigated here. Moreover, wavelet analysis of the acoustic pressure and velocity signals near the trailing edge show a similar periodic amplitude modulation which is associated with multiple tonal peaks in the acoustic spectrum. Periodic amplitude modulation of the acoustic pressure and velocity fluctuations on the pressure side are also observed when transition is forced on the suction side, showing that pressure-side events alone can be the cause.
In the current study, selective forcing of cross-flow instability modes evolving on a 45• swept wing at Re = 2.17 · 10 6 is achieved by means of spanwise-modulated plasma actuators, positioned near the leading edge. In the perspective of laminar flow control, the followed methodology holds on the discrete roughness elements/upstream flow deformation (DRE/UFD) approach, thoroughly investigated by e.g. Saric et al. (1998);Malik et al. (1999) and Wassermann & Kloker (2002). The possibility of using active devices for UFD provides several advantages over passive means, allowing for a wider range of operating Re numbers and pressure distributions. In the present work, customised alternating current dielectric barrier discharge plasma actuators have been designed, manufactured and characterised. The authority of the actuators in forcing monochromatic stationary cross-flow modes at different spanwise wavelengths is assessed by means of infrared thermography. Moreover, quantitative spatio-temporal measurements of the boundary layer velocity field are performed using time-resolved particle image velocimetry. The results reveal distinct steady and unsteady forcing contributions of the plasma actuator on the boundary layer. It is shown that the actuators introduce unsteady fluctuations in the boundary layer, amplifying at frequencies significantly lower than the actuation frequency. In line with the DRE/UFD strategy, forcing a sub-critical stationary mode, with a shorter wavelength compared to the naturally selected mode, results in less amplified primary vortices and related fluctuations, compared to the critical forcing case. The effect of the forcing on the flow stability is further inspected by combining the measured actuators body-force with the numerical solution of the laminar boundary layer and linear stability theory. The simplified methodology yields fast and computationally cheap estimates on the effect of steady forcing (magnitude and direction) on the boundary layer stability.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.