We show that a polarised manifold with a constant scalar curvature Kähler metric and discrete automorphisms is K-stable. This refines the K-semistability proved by S. K. Donaldson.
Abstract. We study a class of meromorphic connections ∇(Z) on P 1 , parametrised by the central charge Z of a stability condition, with values in a Lie algebra of formal vector fields on a torus. Their definition is motivated by the work of Gaiotto, Moore and Neitzke on wall-crossing and three-dimensional field theories. Our main results concern two limits of the families ∇(Z) as we rescale the central charge Z → RZ. In the R → 0 "conformal limit" we recover a version of the connections introduced by Bridgeland and Toledano Laredo (and so the Joyce holomorphic generating functions for enumerative invariants), although with a different construction yielding new explicit formulae. In the R → ∞ "large complex structure" limit the connections ∇(Z) make contact with the Gross-Pandharipande-Siebert approach to wall-crossing based on tropical geometry. Their flat sections display tropical behaviour, and also encode certain tropical/relative Gromov-Witten invariants.
Abstract. -We show that the Hilbert scheme of curves and Le Potier's moduli space of stable pairs with one dimensional support have a common GIT construction. The two spaces correspond to chambers on either side of a wall in the space of GIT linearisations.We explain why this is not enough to prove the "DT/PT wall crossing conjecture" relating the invariants derived from these moduli spaces when the underlying variety is a 3-fold. We then give a gentle introduction to a small part of Joyce's theory for such wall crossings, and use it to give a short proof of an identity relating the Euler characteristics of these moduli spaces.When the 3-fold is Calabi-Yau the identity is the Euler-characteristic analogue of the DT/PT wall crossing conjecture, but for general 3-folds it is something different, as we discuss.
Résumé (Schémas de Hilbert et paires stables : GIT et croisements de murs de caté-gories dérivées)Nous montrons que le schéma de Hilbert de courbes et l'espace de modules de Le Potier de paires stables à support à une dimension, ont une construction GIT commune. Les deux espaces correspondents aux chambres de par et d'autre d'un mur dans l'espace de linéarisations GIT.Nous expliquons pourquoi cela ne suffit pas pour prouver la « conjecture de croisement de murs DT/PT » qui relie les invariants dérivés de ces espaces de modules quand la variété sous-jacente est un 3-fold. Nous donnons, ensuite, une introduction simple à une petite partie de la théorie de Joyce sur les croisements de murs de ce type, Quand le 3-fold est de type Calabi-Yau, l'identité est le pendant, pour la caractéristique d'Euler, de la conjecture de croisement de murs DT/PT, mais dans le cas général elle s'avère être différente de celle-ci, comme nous l'expliquons.
Motivated by string-theoretic arguments Manschot, Pioline and Sen discovered a new remarkable formula for the Poincaré polynomial of a smooth compact moduli space of stable quiver representations which effectively reduces to the abelian case (ie thin dimension vectors). We first prove a motivic generalization of this formula, valid for arbitrary quivers, dimension vectors and stabilities. In the case of complete bipartite quivers we use the refined GW/Kronecker correspondence between Euler characteristics of quiver moduli and Gromov-Witten invariants to identify the MPS formula for Euler characteristics with a standard degeneration formula in Gromov-Witten theory. Finally we combine the MPS formula with localization techniques, obtaining a new formula for quiver Euler characteristics as a sum over trees, and constructing many examples of explicit correspondences between quiver representations and tropical curves.
16G20, 14N35, 14T05
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.