The complex [Ru(Triphos)(TMM)] (Triphos = 1,1,1-tris(diphenylphosphinomethyl)ethane, TMM = trimethylene methane) provides an efficient catalytic system for the hydrogenation of a broad range of challenging functionalities encompassing carboxylic esters, amides, carboxylic acids, carbonates, and urea derivatives. The key control factor for this unique substrate scope results from selective activation to generate either the neutral species [Ru(Triphos)(Solvent)H2] or the cationic intermediate [Ru(Triphos)(Solvent)(H)(H2)](+) in the presence of an acid additive. Multinuclear NMR spectroscopic studies demonstrated together with DFT investigations that the neutral species generally provides lower energy pathways for the multistep reduction cascades comprising hydrogen transfer to C═O groups and C-O bond cleavage. Carboxylic esters, lactones, anhydrides, secondary amides, and carboxylic acids were hydrogenated in good to excellent yields under these conditions. The formation of the catalytically inactive complexes [Ru(Triphos)(CO)H2] and [Ru(Triphos)(μ-H)]2 was identified as major deactivation pathways. The former complex results from substrate-dependent decarbonylation and constitutes a major limitation for the substrate scope under the neutral conditions. The deactivation via the carbonyl complex can be suppressed by addition of catalytic amounts of acids comprising non-coordinating anions such as HNTf2 (bis(trifluoromethane)sulfonimide). Although the corresponding cationic cycle shows higher overall barriers of activation, it provides a powerful hydrogenation pathway at elevated temperatures, enabling the selective reduction of primary amides, carbonates, and ureas in high yields. Thus, the complex [Ru(Triphos)(TMM)] provides a unique platform for the rational selection of reaction conditions for the selective hydrogenation of challenging functional groups and opens novel synthetic pathways for the utilization of renewable carbon sources.
Hydrogenation of amides in the presence of [Ru(acac)3] (acacH=2,4-pentanedione), triphos [1,1,1-tris- (diphenylphosphinomethyl)ethane] and methanesulfonic acid (MSA) produces secondary and tertiary amines with selectivities as high as 93% provided that there is at least one aromatic ring on N. The system is also active for the synthesis of primary amines. In an attempt to probe the role of MSA and the mechanism of the reaction, a range of methanesulfonato complexes has been prepared from [Ru(acac)3], triphos and MSA, or from reactions of [RuX(OAc)(triphos)] (X=H or OAc) or [RuH2(CO)(triphos)] with MSA. Crystallographically characterised complexes include: [Ru(OAc-κ(1)O)2(H2O)(triphos)], [Ru(OAc-κ(2)O,O')(CH3SO3-κ(1)O)(triphos)], [Ru(CH3SO3-κ(1)O)2(H2O)(triphos)] and [Ru2(μ-CH3SO3)3(triphos)2][CH3SO3], whereas other complexes, such as [Ru(OAc-κ(1)O)(OAc-κ(2)O,O')(triphos)], [Ru(CH3SO3-κ(1)O)(CH3SO3-κ(2)O,O')(triphos)], H[Ru(CH3SO3-κ(1)O)3(triphos)], [RuH(CH3SO3-κ(1)O)(CO)(triphos)] and [RuH(CH3SO3-κ(2)O,O')(triphos)] have been characterised spectroscopically. The interactions between these various complexes and their relevance to the catalytic reactions are discussed.
A golden opportunity was seized to prepare an unbridged, dinucleur gold(II) compound, [Au2(C6F5)4(tht)2] (tht=tetrahydrothiophene), without any stabilizing chelating ligands (see picture; Au orange, S yellow, F green, C black) and to crystallographically characterize the gold(I) and gold(III) complexes participating in this conversion. A unique ligand scrambling of the latter gold(III) compound occurs in solution.
Hydrogen goes with the flow: Conversion of amides into amines is usually achieved with stoichiometric amounts of metal hydrides, which generate large amounts of waste. Catalytic hydrogenation represents an environmentally benign alternative for this conversion, whereas flow catalysis allows catalyst separation and high throughput. Here, we combine amide hydrogenation and flow catalysis for the first time.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.