The viability of next generation lithium and beyond-lithium battery technologies hinges on the development of electrolytes with improved performance. Comparing electrolytes is not straightforward, as multiple electrochemical parameters affect the performance of an electrolyte.Additional complications arise due to the formation of concentration gradients in response to dc potentials. We propose a modified version of Ohm's law to analyze current through binary electrolytes driven by a small dc potential. We show that the proportionality constant in Ohm's law is given by the product of the ionic conductivity, κ, and the ratio of currents in the presence (i ss ) and absence (i Ω ) of concentration gradients, ρ +¿ ¿ . The importance of ρ +¿ ¿ was recognized by J. Evans, C.A. Vincent, and P.G. Bruce [Polymer 28, 2324[Polymer 28, (1987]. The product κ ρ +¿ ¿ is used to rank order a collection of electrolytes. Ideally, both κ and ρ +¿ ¿ should be maximized, but we observe a trade-off between these two parameters, resulting in an upper bound. This trade-off is analogous to the famous Robeson upper bound for permeability and selectivity in gas separation membranes. Designing polymer electrolytes that overcome this trade-off is a worthwhile but ambitious goal.
Lithium metal is a promising anode material for next-generation rechargeable batteries, but non-uniform electrodeposition of lithium is a significant barrier. These non-uniform deposits are often referred to as lithium "dendrites," although their morphologies can vary. We have surveyed the literature on lithium electrodeposition through three classes of electrolytes: liquids, polymers and inorganic solids. We find that the non-uniform deposits can be grouped into six classes: whiskers, moss, dendrites, globules, trees, and cracks. These deposits were obtained in a variety of cell geometries using both unidirectional deposition and cell cycling. The main result of the study is a figure where the morphology of electrodeposited lithium is plotted as a function of two variables: shear modulus of the electrolyte and current density normalized by the limiting current density. We show that specific morphologies are confined to contiguous regions on this two-dimensional plot.
We present experimental results on the phase behavior of block copolymer/salt mixtures over a wide range of copolymer compositions, molecular weights, and salt concentrations. The experimental system comprises polystyrene- block-poly(ethylene oxide) and lithium bis(trifluoromethanesulfonyl)imide (LiTFSI) salt. It is well established that LiTFSI interacts favorably with poly(ethylene oxide) relative to polystyrene. The relationship between chain length and copolymer composition at fixed temperature is U-shaped, as seen in experiments on conventional block copolymers and as anticipated from the standard self-consistent field theory (SCFT) of block copolymer melts. The phase behavior can be explained in terms of an effective Flory-Huggins interaction parameter between the polystyrene monomers and poly(ethylene oxide) monomers complexed with the salt, χ, which increases linearly with salt concentration. The phase behavior of salt-containing block copolymers, plotted on a segregation strength versus copolymer composition plot, is similar to that of conventional (uncharged) block copolymer melts, when the parameter χ replaces χ in segregation strength.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.