The potential for gene flow between Camelina sativa, a promising edible and industrial oil crop in Canada, and its wild North American relatives C. alyssum, C. microcarpa and C. rumelica subsp. rumelica, was investigated. Sequence analysis of the nuclear ribosomal internal transcribed spacer region (ITS) was used to differentiate Camelina species and/or accession‐specific nucleotide markers and identify interspecific F1 hybrids. ITS analysis identified hybrids in progeny of C. alyssum × C. sativa, C. microcarpa accession 36010 × C. sativa and C. sativa × C. rumelica subsp. rumelica. Seed set on C. alyssum × C. sativa F1 and F2 progeny was similar to the parents; few seeds were produced on hybrid progeny of C. microcarpa accession 36010 × C. sativa and C. sativa × C. rumelica subsp. rumelica. The study provided evidence that should the species have sympatric distributions and overlapping flowering periods, gene flow between C. sativa and its wild North American relatives is possible and that it would most likely occur with C. alyssum given the high fertility of the F1 hybrids recovered.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.