Adipose tissue grows primarily by a combination of increases in fat cell volume (hypertrophy) and in fat cell number (hyperplasia), but the regional growth pattern of white adipose tissue depots in animal species and in the human is still unclear. In this study we characterized fully the age-related changes in adipose tissue growth, composition, and cellularity of four fat depots of male Wistar rats that varied in age from 7 wk to 15 mo and in body weight from 178 to 808 g. Body weight and the weight of each of the four adipose depots studied (epididymal, mesenteric, subcutaneous inguinal, and retroperitoneal) increased progressively with age and ad libitum feeding. Comparison of the cellularity of the four adipose depots, however, showed remarkable and significant differences in the pattern of growth within the same animals. The cumulative growth of the two intra-abdominal fat depots (mesenteric and epididymal) was due mostly to hypertrophy (increases in cell volume of 83 and 64%, respectively), whereas the growth of the other two depots (retroperitoneal and inguinal) was due predominantly to hyperplasia (increases in cell number of 58 and 65%, respectively). These findings uncover major and unexpected regional differences in the modulation of adipose tissue growth within aging animals fed ad libitum and suggest local, region-specific regulatory controls of this growth.
Research Methods and Procedures:Three-month-old female and male Wistar rats were subjected to a chronic, mild to moderate caloric restriction paradigm (5%, 10%, or 20% reduction in caloric intake from ad libitum values) for 6 months. This was accomplished using a unique automated feeder system tailored to the food consumption levels of individual rats. Body weight and length, weight of lean organs, regional adipose mass, and adipose cellularity were measured before and after the diet restriction. Results: Caloric restriction produced proportional decelerations in body weight increases in both genders, without significant changes in body length or lean organ mass. Marked and disproportional reductions in regional adipose tissue mass were produced at all levels of food restriction (even at 5% restriction). An unexpected finding was that in response to graded caloric restriction, female rats preserved adipose fat cell number at the expense of fat cell volume, whereas the converse was seen for male rats. Discussion: These studies demonstrate a sexual dimorphism in the response to mild to moderate degrees of chronic caloric restriction. At low levels of caloric restriction, it is possible to affect regional adipose mass and cellularity while preserving lean organ mass.
HAUSMAN, DOROTHY B., JACQUELINE B. FINE, KRISHNA TAGRA, SHEA S. FLEMING, ROY J. MARTIN, AND MARIO DIGIROLAMO. Regional fat pad growth and cellularity in obese Zucker rats: modulation by caloric restriction. Obes Res. 2003;11:674-682. Objective: To investigate, in young obese male Zucker rats, the effects of chronic food restriction and subsequent refeeding on: 1) parameters of nonadipose and adipose growth, 2) regional adipose depot cellularity [fat cell volume (FCV) and number], and 3) circulating leptin levels. Research Methods and Procedures: Obese (fa/fa) and lean (Fa/?) male Zucker rats were studied from age 5 to 19 weeks. After baseline food intake monitoring, 10 obese rats were subjected to 58 days of marked caloric restriction from ad libitum levels [obese-restricted (OR)], followed by a return to ad libitum feeding for 22 days. Ten lean control rats and 10 obese control rats were fed ad libitum for the entire experiment. All rats were fed using a computer-driven automated feeding system designed to mimic natural eating patterns. Results: After food restriction, OR rats weighed significantly less than did lean and obese rats and showed a significant diminution in body and adipose growth as compared with obese rats. Relative adiposity was not different between obese and OR rats and was significantly higher than that of lean rats. The limitation in growth of the adipose tissue mass in OR rats was due mostly to suppression of fat cell proliferation because the mean FCV in each of the four depots was not affected. Serum leptin levels of OR and obese rats were not different from each other but were significantly higher than those of lean rats. Discussion: Marked caloric restriction affects obese male Zucker rats in a manner different from that of nongenetic rodent models (i.e., Wistar rats). In comparison with the response to caloric deprivation of Wistar rats, these calorically restricted obese male Zucker rats appeared to defend their relative adiposity and mean FCV at the expense of fat cell number. These findings indicate that genetic and/or tissue-specific controls override the general consequences of food restriction in this genetic model of obesity.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.