BackgroundGenes present in only certain strains of a bacterial species can strongly affect cellular phenotypes and evolutionary potentials. One segment that seemed particularly rich in strain-specific genes was found by comparing the first two sequenced Helicobacter pylori genomes (strains 26695 and J99) and was named a “plasticity zone”.Principal FindingsWe studied the nature and evolution of plasticity zones by sequencing them in five more Helicobacter strains, determining their locations in additional strains, and identifying them in recently released genome sequences. They occurred as discrete units, inserted at numerous chromosomal sites, and were usually flanked by direct repeats of 5′AAGAATG, a sequence generally also present in one copy at unoccupied sites in other strains. This showed that plasticity zones are transposable elements, to be called TnPZs. Each full length TnPZ contained a cluster of type IV protein secretion genes (tfs3), a tyrosine recombinase family gene (“xerT”), and a large (≥2800 codon) orf encoding a protein with helicase and DNA methylase domains, plus additional orfs with no homology to genes of known function. Several TnPZ types were found that differed in gene arrangement or DNA sequence. Our analysis also indicated that the first-identified plasticity zones (in strains 26695 and J99) are complex mosaics of TnPZ remnants, formed by multiple TnPZ insertions, and spontaneous and transposable element mediated deletions. Tests using laboratory-generated deletions showed that TnPZs are not essential for viability, but identified one TnPZ that contributed quantitatively to bacterial growth during mouse infection and another that affected synthesis of proinflammatory cytokines in cell culture.ConclusionsWe propose that plasticity zone genes are contained in conjugative transposons (TnPZs) or remnants of them, that TnPZ insertion is mediated by XerT recombinase, and that some TnPZ genes affect bacterial phenotypes and fitness.
BackgroundThe gastric pathogen Helicobacter pylori is extraordinary in its genetic diversity, the differences between strains from well-separated human populations, and the range of diseases that infection promotes.Principal FindingsHousekeeping gene sequences from H. pylori from residents of an Amerindian village in the Peruvian Amazon, Shimaa, were related to, but not intermingled with, those from Asia. This suggests descent of Shimaa strains from H. pylori that had infected the people who migrated from Asia into The Americas some 15,000+ years ago. In contrast, European type sequences predominated in strains from Amerindian Lima shantytown residents, but with some 12% Amerindian or East Asian-like admixture, which indicates displacement of ancestral purely Amerindian strains by those of hybrid or European ancestry. The genome of one Shimaa village strain, Shi470, was sequenced completely. Its SNP pattern was more Asian- than European-like genome-wide, indicating a purely Amerind ancestry. Among its unusual features were two cagA virulence genes, each distinct from those known from elsewhere; and a novel allele of gene hp0519, whose encoded protein is postulated to interact with host tissue. More generally, however, the Shi470 genome is similar in gene content and organization to those of strains from industrialized countries.ConclusionsOur data indicate that Shimaa village H. pylori descend from Asian strains brought to The Americas many millennia ago; and that Amerind strains are less fit than, and were substantially displaced by, hybrid or European strains in less isolated communities. Genome comparisons of H. pylori from Amerindian and other communities should help elucidate evolutionary forces that have shaped pathogen populations in The Americas and worldwide.
The method of recovering Helicobacter pylori DNA or viable cells absorbed on a string that a person has swallowed and that is retrieved an hour later (string test) should be a useful alternative to traditional analysis of cells or DNA obtained by endoscopy, which is invasive, uncomfortable, relatively costly, and ill-suited for community-based and pediatric studies. Here we assayed the sensitivity and validity of the string test versus conventional endoscopic biopsy for detecting and analyzing H. pylori infection. Forty-four people with gastric complaints were studied using both H. pylori culture and urease gene (ureB) PCR. H. pylori organisms cultured from strings and biopsy specimens from the same patients were fingerprinted by the randomly amplified polymorphic DNA (RAPD) method. Biopsy sections were also hematoxylin and eosin and silver stained for H. pylori detection. H. pylori was cultured from 80% of strings and detected by PCR from 91% of strings from participants whose biopsies had been H. pylori positive by culture, PCR, and/or histology. Strains recovered from strings and biopsy specimens yielded identical or closely related RAPD profiles in each of the 24 cases tested. We conclude that the string test is a useful method for H. pylori recovery and analysis when relatively noninvasive procedures are needed.
ABSTRACT. Admixture occurs when individuals from parental populations that have been isolated for hundreds of generations form a new hybrid population. Currently, interest in measuring biogeographic ancestry has spread from anthropology to forensic sciences, direct-to-consumers personal genomics, and civil rights issues of minorities, and it is critical for genetic epidemiology studies of admixed populations. Markers with highly differentiated frequencies among human populations are informative of ancestry and are called ancestry informative markers (AIMs). For tri-hybrid Latin American populations, ancestry information is required for Africans, Europeans and Native Americans. We developed two multiplex panels of AIMs (for 14 SNPs) to be genotyped by two mini-sequencing reactions, suitable for investigators of medium-small laboratories to estimate admixture of Latin American populations. We tested the performance of these AIMs by comparing results obtained with our 14 AIMs with those obtained using 108 AIMs genotyped in the same individuals, for which DNA samples is available for other investigators. We emphasize that this type of comparison should be made when new admixture/population structure panels are developed. At the population level, our 14 AIMs were useful to estimate European admixture, though they overestimated African admixture and underestimated Native American admixture. Combined with more AIMs, our panel could be used to infer individual admixture. We used our panel to infer the pattern of admixture in two urban populations (Montes Claros and Manhuaçu) of the State of Minas Gerais (southeastern Brazil), obtaining a snapshot of their genetic structure in the context of their demographic history.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.