Targeted delivery of therapeutics to tumor neovasculature is potentially a powerful approach for selective cancer treatment. Integrins are heterodimeric transmembrane proteins involved in cell adhesion and cell signaling, and their expression is commonly upregulated in cancers and inflammatory diseases. The αvβ3 integrin is differentially upregulated on angiogenic endothelial cells as well as on many cancer cells. Here we demonstrate the differential targeting of cisplatin prodrug-encapsulated poly(D,L-lactic-co-glycolic acid)-block-polyethylene glycol (PLGA-PEG) nanoparticles (NPs) to the αvβ3 integrin on cancer cells using the cyclic pentapeptide c(RGDfK). Cisplatin is one of the most widely used anticancer drugs and approaches that can improve its therapeutic index are of broad importance. The RGD-targeted Pt(IV)-encapsulated NPs displayed enhanced cytotoxicity as compared to cisplatin administered in its conventional dosage form in model prostate and breast cancer epithelial cells in vitro. Cytotoxicities were also elevated in comparison to those of previously reported systems, a small molecule Pt(IV)-RGD conjugate and a Pt(IV) nanoscale coordination polymer carrying RGD moieties. This result encouraged us also to evaluate the anticancer effect of the new construct in an animal model. The RGD-targeted PLGA-PEG NPs were more efficacious and better tolerated by comparison to cisplatin in an orthotopic human breast cancer xenograft model in vivo.
Metastatic cancer cells are lethal. Understanding the molecular mechanisms that bolster the conversion from benign to malignant progression is key to treating these heterogeneous and resistant neoplasms. The epithelial-mesenchymal transition (EMT) is a conserved cellular program that alters cell shape, adhesion, and movement. The shift to a more mesenchymal-like phenotype can promote tumor cell intravasation of surrounding blood vessels and emigration to a new organ, yet may not be necessary for extravasation or colonization into that environment. Lymphatic dissemination, on the other hand, may not require EMT. This review presents emerging data on the modes by which tumor cells promote EMT/MET via microRNA and prepare the pre-metastatic niche via exosomes.
Cell migration in vivo often requires invasion through tissue matrices. Currently little is known regarding the signaling pathways that regulate cell invasion through three-dimensional matrices. The small GTPases Cdc42, Rac and Rho are key regulators of actin cytoskeletal and adhesive structures. We now show that expression of dominant negative forms of either Cdc42, Rac or Rho inhibited PDGF-BB-stimulated Rat1 ®broblast invasion into 3D collagen matrices, indicating that the activity of each of these GTPases is necessary for cell invasion. In contrast, only Rac activation was required for PDGF-BB-stimulated locomotion across a planar substrate in the Boyden chamber. Interestingly, PDGF-induced invasion was also strongly inhibited by expression of constitutively active forms of Cdc42 or Rho, and to a lesser extent by constitutively active Rac. We also show that constitutively active V12-Rac signi®cantly stimulated basal Rat1 ®broblast invasion, independent of PI-3-kinase activity, and that this eect was suppressed by the eector mutant V12/H40-Rac. These results suggest that cellular invasion may require an optimal level of activation of Cdc42, Rho and Rac, and that migration and invasion are dierentially modulated by Rho family GTPases. Oncogene (2000) 19, 580 ± 591.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.