Objectives: To study whether 60-Hz stimulation, compared with routine 130 Hz, improves swallowing function and freezing of gait (FOG) in patients with Parkinson disease (PD) who undergo bilateral subthalamic nucleus (STN) deep brain stimulation (DBS). Methods:We studied 7 patients with PD who experienced FOG that persisted despite routine 130-Hz stimulation and dopaminergic medication. Each patient received 3 modified barium swallow (MBS) studies in a single day under 3 DBS conditions in the medication-on state: 130 Hz, 60 Hz, or DBS off, in a randomized double-blind manner. The laryngeal penetration and aspiration events were cautiously assessed, and a swallowing questionnaire was completed. The Unified Parkinson's Disease Rating Scale, Part III motor score, axial subscore, tremor subscore, and FOG by a questionnaire and stand-walk-sit test were also assessed. The best DBS condition (60 Hz here) producing the least FOG was maintained for 3 to 8 weeks, and patients were assessed again. Changes in measurements between the 60 Hz and 130 Hz were analyzed using paired t test, with swallowing function as primary and the remainder as secondary outcomes. Changes between other DBS conditions were further explored with Bonferroni correction.Results: Compared with the routine 130 Hz, 60-Hz stimulation significantly reduced aspiration frequency by 57% on MBS study and perceived swallowing difficulty by 80% on questionnaire. It also significantly reduced FOG, and axial and parkinsonian symptoms. The benefits at 60-Hz stimulation persisted over the average 6-week assessment. Conclusions:Compared with the routine 130 Hz, the 60-Hz stimulation significantly improved swallowing function, FOG, and axial and parkinsonian symptoms in patients with PD treated with bilateral STN-DBS, which persisted over the 6-week study period. 1-5 However, DBS is less effective at improving the axial symptoms of postural instability, gait disorders, and speech and swallowing dysfunction. STN-DBS might transiently improve the axial symptoms, but could make them worse over the course of 2 to 5 years. Classification of evidence:6-15 The DBS stimulation settings typically used in these studies were high frequency of 130 to 185 Hz.Recently, a stimulation frequency of 60 Hz has been found to improve the axial symptoms of freezing of gait (FOG) 16-19 and dysarthria 15,19 compared with the routinely used 130-Hz stimulation. However, whether or not the stimulation frequency could also affect another axial symptom, swallowing function, remains unknown. The answer to this question is critical, because dysphagia is frequently present in patients with mid-and late-stage PD 20,21 and is associated with
SummaryBackground Relapses of multiple sclerosis decrease during pregnancy, when the hormone estriol is increased. Estriol treatment is anti-infl ammatory and neuroprotective in preclinical studies. In a small single-arm study of people with multiple sclerosis estriol reduced gadolinium-enhancing lesions and was favourably immunomodulatory. We assessed whether estriol treatment reduces multiple sclerosis relapses in women.
The spinocerebellar ataxias, like all neurodegenerative diseases, lack objective disease- and stage-specific biomarkers. Based on reports of clinically evident optic disc atrophy or retinal disease in some ataxia patients, and the discovery that pre-symptomatic retinal thinning occurs in other neurologic diseases such as multiple sclerosis, we tested the hypothesis that subclinical neuronal or axonal loss in the retina could occur in the degenerative ataxias. Spectral domain optical coherence tomography was performed on 29 ataxia patients with genetically proven spinocerebellar ataxia (SCA) 1, 2, 3, or 6, or multisystem atrophy type C (MSA-C) and 27 age-matched normal subjects. Ataxia patients were assessed using the scale for assessment and rating of ataxia. Compared with normal control subjects, retinal nerve fibre layer (RNFL) thickness was reduced for patients with SCA2 and SCA3, and thickness in the macular region was reduced for all SCAs but SCA2.
Deep brain stimulation (DBS) in the thalamic ventrointermediate nucleus (VIM) is the traditional target for the surgical treatment of pharmacologically refractory essential tremor or parkinsonian tremor. Studies in recent years on DBS in posterior subthalamic area (PSA), including the zona incerta and the prelemniscal radiation, have shown promising results in tremor suppression, particularly for those tremors difficult to be well controlled by VIM DBS, such as the proximal postural tremor, distal intention tremor and some cerebellar outflow tremor in various diseases including essential tremor and multiple sclerosis. The adverse effect profile of the PSA DBS is mild and transient, without lasting or striking dysarthria, disequilibrium or tolerance, in contrast to VIM DBS, particularly bilateral DBS. However, the studies on PSA DBS so far are still limited, with a handful of studies on bilateral PSA, and a short follow up duration compared to VIM. More studies are needed for direct comparison of these targets in the future. A review here would help to gain more insight into the benefits and limits of the PSA DBS compared to that in VIM in the clinical management of various tremors, particularly for those difficult to be well controlled by traditional VIM DBS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.