Multiple chemotherapies are proposed to cause cell death in part by increasing the steady-state levels of cellular reactive oxygen species (ROS). However, for most of these drugs exactly how the resultant ROS function and are sensed is poorly understood. In particular, its unclear which proteins the ROS modify and their roles in chemotherapy sensitivity/resistance. To answer these questions, we examined 11 chemotherapies with an integrated proteogenomic approach identifying many unique targets for these drugs but also shared ones including ribosomal components, suggesting one mechanism by which chemotherapies regulate translation. We focus on CHK1 which we find is a nuclear H2O2 sensor that promotes an anti-ROS cellular program. CHK1 acts by phosphorylating the mitochondrial-DNA binding protein SSBP1, preventing its mitochondrial localization, which in turn decreases nuclear H2O2. Our results reveal a druggable nucleus-to-mitochondria ROS sensing pathway required to resolve nuclear H2O2 accumulation, which mediates resistance to platinum-based chemotherapies in ovarian cancers.
Resident T lymphocytes (T
RM
) protect tissues during pathogen reexposure. Although T
RM
phenotype and restricted migratory pattern are established, we have a limited understanding of their response kinetics, stability, and turnover during reinfections. Such characterizations have been restricted by the absence of in vivo fate-mapping systems. We generated two mouse models, one to stably mark CD103
+
T cells (a marker of T
RM
cells) and the other to specifically deplete CD103
−
T cells. Using these models, we observed that intestinal CD103
+
T cells became activated during viral or bacterial reinfection, remained organ-confined, and retained their original phenotype but failed to reexpand. Instead, the population was largely rejuvenated by CD103
+
T cells formed de novo during reinfections. This pattern remained unchanged upon deletion of antigen-specific circulating T cells, indicating that the lack of expansion was not due to competition with circulating subsets. Thus, although intestinal CD103
+
resident T cells survived long term without antigen, they lacked the ability of classical memory T cells to reexpand. This indicated that CD103
+
T cell populations could not autonomously maintain themselves. Instead, their numbers were sustained during reinfection via de novo formation from CD103
−
precursors. Moreover, in contrast to CD103
-
cells, which require antigen plus inflammation for their activation, CD103
+
T
RM
became fully activated follwing exposure to inflammation alone. Together, our data indicate that primary CD103
+
resident memory T cells lack secondary expansion potential and require CD103
−
precursors for their long-term maintenance.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.