Avian pathogenic Escherichia coli (APEC) strains frequently cause extraintestinal infections and are responsible for significant economic losses in the poultry industry worldwide. APEC isolates are closely related to human extraintestinal pathogenic E. coli (ExPEC) strains and may also act as pathogens for humans. Known APEC virulence factors include adhesins such as type 1 fimbriae and curli, iron acquisition systems, and cytotoxins. Here we show that APEC strain SEPT362, isolated from a septicemic hen, expresses a type VI secretion system (T6SS); causes cytoskeleton rearrangements; and invades epithelial cells, replicates within macrophages, and causes lethal disease in chicks. To assess the contribution of the T6SS to SEPT362 pathogenesis, we generated two mutants, hcp (which encodes a protein suggested to be both secreted and a structural component of the T6SS) and clpV (encoding the T6SS ATPase). Both mutants showed decreased adherence and actin rearrangement on epithelial cells. However, only the hcp mutant presented a mild decrease in its ability to invade epithelial cells, and none of these mutants were defective for intramacrophage replication. Transcriptome studies showed that the level of expression of type 1 fimbriae was decreased in these mutants, which may account for the diminished adhesion and invasion of epithelial cells. The T6SS seems to be important for the disease process, given that both mutants were attenuated for infection in chicks. These results suggest that the T6SS influences the expression of type 1 fimbriae and contributes to APEC pathogenesis.Extraintestinal pathogenic Escherichia coli (ExPEC) strains cause a wide range of diseases, including urinary tract infections, newborn meningitis, abdominal sepsis, and septicemia (59). ExPEC pathotype subgroups include avian pathogenic E. coli (APEC), uropathogenic E. coli (UPEC), neonatal meningitis E. coli (NMEC), and septicemic E. coli (61). In poultry, APEC strains are a frequent cause of extraintestinal infections leading to respiratory or systemic disease. Colisepticemia, the most severe systemic disease, is characterized by pericarditis, perihepatitis, airsacculitis, synovitis, and peritonitis and is responsible for significant economic losses in the poultry industry worldwide (34). APEC strains are closely related to human ExPEC strains, with significant similarity existing between UPEC and APEC (46, 47). Additionally, it has been suggested that some closely related clones can be involved in extraintestinal infections in humans and poultry, suggesting no host specificity for these types of isolates (27,43,46,47,58).The pathogenicity mechanisms of APEC are varied and remain largely uncharacterized. Established APEC virulence traits include iron uptake systems, the production of cytotoxins, and adhesins (40,41,76). Adhesins play an important role in APEC pathogenesis, and the best-characterized adhesins include type 1, P, and curli fimbriae and temperature-sensitive hemagglutinin (Tsh). These adhesins are required for the full virulenc...
The intracellular multiplication factor (IcmF) protein is a component of the recently described type VI secretion system (T6SS). IcmF has been shown to be required for intra-macrophage replication and inhibition of phagosome-lysosome fusion in Legionella pneumophila. In Vibrio cholerae it is involved in motility, adherence and conjugation. Given that we previously reported that two T6SS genes (hcp and clpV) contribute to the pathogenesis of a septicaemic strain (SEPT362) of avian pathogenic Escherichia coli (APEC), we investigated the function of IcmF in this strain. Further elucidation of the virulence mechanisms of APEC is important because this pathogen is responsible for financial losses in the poultry industry, and is closely related to human extraintestinal pathogenic E. coli (ExPEC) strains, representing a potential zoonotic risk, as well as serving as a reservoir of virulence genes. Here we show that an APEC icmF mutant has decreased adherence to and invasion of epithelial cells, as well as decreased intra-macrophage survival. The icmF mutant is also defective for biofilm formation on abiotic surfaces. Additionally, expression of the flagella operon is decreased in the icmF mutant, leading to decreased motility. The combination of these phenotypes culminates in this mutant being altered for infection in chicks. These results suggest that IcmF in APEC may play a role in disease, and potentially also in the epidemiological spread of this pathogen through enhancement of biofilm formation.
The ideal live vaccine to control Salmonella in commercial chicken flocks should engender protection against various strains. The purpose of the present study was to confirm the attenuation of a Salmonella Gallinarum (SG) mutant strain with deletion on genes cobS and cbiA, that are involved in the biosynthesis of cobalamin. Furthermore, evaluate its use as a live vaccine against Salmonella. For the evaluation of the vaccine efficacy, two experiments were conducted separately. Birds from a commercial brown line of chickens were used to perform challenge with SG wild type strain and birds from a commercial white line of chickens were used to perform challenge with Salmonella Enteritidis (SE) wild type strain. In both experiments, the birds were separated in three groups (A, B and C). Birds were orally vaccinated with the SG mutant as the following programme: group A, one dose at 5 days of age; group B, one dose at 5 days of age and a second dose at 25 days of age; and group C, birds were kept unvaccinated as controls. At 45 days of age, birds from all groups, including the control, were challenged orally by SG wild type (brown line) or SE wild type (white line). Lastly, another experiment was performed to evaluate the use of the SG mutant strain to prevent caecal colonization by SE wild type on 1-day-old broiler chicks. Mortality and systemic infection by SG wild type strain were assessed in brown chickens; faecal shedding and systemic infection by SE wild type were assessed in white chickens and caecal colonization was assessed in broiler chicks. Either vaccination with one or two doses of SG mutant, were capable to protect brown chickens against SG wild type. In the experiment with white chickens, only vaccination with two doses of SG mutant protected the birds against challenge with SE wild type. Although, SG mutant could not prevent caecal colonization in 1-day-old broiler chicks by the challenge strain SE wild type. Overall, the results indicated that SG mutant is a promising Salmonella live vaccine candidate that demonstrated good efficacy to control the infection by two serotypes of major importance to the poultry industry.
Isopathy is low cost and non-toxic. It may have a role to play in the widespread problem of Salmonella in poultry. Further research should be conducted.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.