Men experience more severe outcomes from coronavirus disease 2019 (COVID-19) than women. Golden Syrian hamsters were used to explore sex differences in the pathogenesis of a human clinical isolate of severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2).
In untreated HIV-1 infection, rapid viral evolution allows escape from immune responses. Viral replication can be blocked by antiretroviral therapy. However, HIV-1 persists in a latent reservoir in resting CD4+ T cells, and rebound viremia occurs following treatment interruption. The reservoir, which is maintained in part by clonal expansion, can be measured using quantitative viral outgrowth assays (QVOAs) in which latency is reversed with T cell activation to allow viral outgrowth. Recent studies have shown that viruses detected in QVOAs prior to treatment interruption often differ from rebound viruses. We hypothesized that autologous neutralizing antibodies directed at the HIV-1 envelope (Env) protein might block outgrowth of some reservoir viruses. We modified the QVOA to reflect pressure from low concentrations of autologous antibodies and showed that outgrowth of a substantial but variable fraction of reservoir viruses is blocked by autologous contemporaneous immunoglobulin G (IgG). A reduction in outgrowth of >80% was seen in 6 of 15 individuals. This effect was due to direct neutralization. We established a phylogenetic relationship between rebound viruses and viruses growing out in vitro in the presence of autologous antibodies. Some large infected cell clones detected by QVOA carried neutralization-sensitive viruses, providing a cogent explanation for differences between rebound virus and viruses detected in standard QVOAs. Measurement of the frequency of reservoir viruses capable of outgrowth in the presence of autologous IgG might allow more accurate prediction of time to viral rebound. Ultimately, therapeutic immunization targeting the subset of variants resistant to autologous IgG might contribute to a functional cure.
Stress inoculation entails intermittent exposure to mildly stressful situations that present opportunities to learn, practice and improve coping in the context of exposure psychotherapies and resiliency training. Here we investigate behavioral and hormonal aspects of stress inoculation modeled in mice. Mice randomized to stress inoculation or a control treatment condition were assessed for corticosterone stress hormone responses and behavior during open-field, object-exploration and tail-suspension tests. Stress inoculation training sessions that acutely increased plasma levels of corticosterone diminished subsequent immobility as a measure of behavioral despair on tail-suspension tests. Stress inoculation also decreased subsequent freezing in the open field despite comparable levels of thigmotaxis in mice from both treatment conditions. Stress inoculation subsequently decreased novel-object exploration latencies and reduced corticosterone responses to repeated restraint. These results demonstrate that stress inoculation acutely stimulates glucocorticoid signaling and then enhances subsequent indications of active coping behavior in mice. Unlike mouse models that screen for the absence of vulnerability to stress or presence of traits that occur in resilient individuals, stress inoculation training reflects an experience-dependent learning-like process that resembles interventions designed to build resilience in humans. Mouse models of stress inoculation may provide novel insights for new preventive strategies or therapeutic treatments of human psychiatric disorders that are triggered and exacerbated by stressful life events.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.