Pseudomonas aeruginosa efficiently intoxicates eukaryotic cells through the activity of the type III secretiontranslocation system (TTSS). Gene deletions within the translocation operon pcrGVH-popBD abolish poreforming activity of P. aeruginosa strains with macrophages and TTSS-dependent hemolysis. Here we investigated the requirements for PcrV, PopB, and PopD in pore formation by analyzing specific mutants using red blood cells (RBCs) and fibroblasts expressing green fluorescent protein fused to actin. Simultaneous secretion of three proteins, PopB, PopD, and PcrV, was required to achieve wild-type hemolysis and effector translocation. Deletion of pcrV in a cytotoxic strain did not affect secretion of PopB and PopD but abolished hemolytic activity and translocation of effectors into fibroblasts. Notably, the PcrV-deficient mutant was not capable of inserting PopD into host cell membranes, whereas PopB and PopD, but not PcrV, were readily found within membranes of wild-type-infected RBCs. Immunoprecipitation experiments performed by using a liposome model of pore assembly revealed a direct interaction between PopD and PopB but not between PopD and PcrV. Consequently, PcrV is necessary for the functional assembly of the PopB/D translocon complex but does not interact directly with pore-forming Pop proteins.
SummaryThe Pseudomonas aeruginosa cystic fibrosis isolate CHA induces type III secretion system-dependent but ExoU-independent oncosis of neutrophils and macrophages. Time-lapse microscopy of the infection process revealed the rapid accumulation of motile bacteria around infected cells undergoing the process of oncosis, a phenomenon we termed pack swarming. Characterization of the non-chemotactic CHAcheZ mutant showed that pack swarming is a bacterial chemotactic response to infected macrophages. A non-cytotoxic mutant, lacking the type IIIsecreted proteins PcrV, PopB and PopD, was able to pack swarm only in the presence of the parental strain CHA or when macrophages were pretreated with the pore-forming toxin streptolysin O. Interaction of P. aeruginosa with red blood cells (RBCs) showed that the contact-dependent haemolysis provoked by CHA requires secretion via the type III system and the PcrV, PopB/PopD proteins. The pore inserted into RBC membrane was estimated from osmoprotection experiments to be between 2.8 and 3.5 nm. CHA-infected macrophages could be protected from cell lysis with PEG3350, indicating that the pore introduced into RBC and macrophage membranes is of similar size. The time course uptake of the vital fluorescent dye, Yo-Pro-1, into infected macrophages confirmed that the formation of transmembrane pores by CHA precedes cellular oncosis. Therefore, CHA-induced macrophage death results from a pore-forming activity that is dependent on the intact pcrGVHpopBD operon.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.