In many higher organisms, 5%-15% of histone H2A is ubiquitylated at lysine 119 (uH2A). The function of this modification and the factors involved in its establishment, however, are unknown. Here we demonstrate that uH2A occurs on the inactive X chromosome in female mammals and that this correlates with recruitment of Polycomb group (PcG) proteins belonging to Polycomb repressor complex 1 (PRC1). Based on our observations, we tested the role of the PRC1 protein Ring1B and its closely related homolog Ring1A in H2A ubiquitylation. Analysis of Ring1B null embryonic stem (ES) cells revealed extensive depletion of global uH2A levels. On the inactive X chromosome, uH2A was maintained in Ring1A or Ring1B null cells, but not in double knockout cells, demonstrating an overlapping function for these proteins in development. These observations link H2A ubiquitylation, X inactivation, and PRC1 PcG function, suggesting an unanticipated and novel mechanism for chromatin-mediated heritable gene silencing.
Post-translational modifications of histone amino termini are an important regulatory mechanism that induce transitions in chromatin structure, thereby contributing to epigenetic gene control and the assembly of specialized chromosomal subdomains. Methylation of histone H3 at lysine 9 (H3-Lys9) by site-specific histone methyltransferases (Suv39h HMTases) marks constitutive heterochromatin. Here, we show that H3-Lys9 methylation also occurs in facultative heterochromatin of the inactive X chromosome (Xi) in female mammals. H3-Lys9 methylation is retained through mitosis, indicating that it might provide an epigenetic imprint for the maintenance of the inactive state. Disruption of the two mouse Suv39h HMTases abolishes H3-Lys9 methylation of constitutive heterochromatin but not that of the Xi. In addition, HP1 proteins, which normally associate with heterochromatin, do not accumulate with the Xi. These observations suggest the existence of an Suv39h-HP1-independent pathway regulating H3-Lys9 methylation of facultative heterochromatin.
Embryonic stem (ES) cells are important tools in the study of gene function and may also become important in cell therapy applications. Establishment of stable XX ES cell lines from mouse blastocysts is relatively problematic owing to frequent loss of one of the two X chromosomes. Here we show that DNA methylation is globally reduced in XX ES cell lines and that this is attributable to the presence of two active X chromosomes. Hypomethylation affects both repetitive and unique sequences, the latter including differentially methylated regions that regulate expression of parentally imprinted genes. Methylation of differentially methylated regions can be restored coincident with elimination of an X chromosome in early-passage parthenogenetic ES cells, suggesting that selection against loss of methylation may provide the basis for X-chromosome instability. Finally, we show that hypomethylation is associated with reduced levels of the de novo DNA methyltransferases Dnmt3a and Dnmt3b and that ectopic expression of these factors restores global methylation levels.
Splicing of mRNA precursors (pre‐mRNA) is preceded by assembly of the pre‐mRNA with small nuclear ribonucleoprotein particles (snRNPs) and protein factors to form a splicesome. Here we show that stimulating Ser/Thr‐specific protein dephosphorylation selectively inhibits an early step during mammalian spliceosome assembly. Treatment of HeLa nuclear splicing extracts with human protein phosphatase 1 (PP1) expressed in Escherichia coli, or PP1 purified from rabbit skeletal muscle, prevents pre‐spliceosome E complex (early complex) formation and stable binding of U2 and U4/U6.U5 snRNPs to the pre‐mRNA. PP1 does not inhibit splicing catalysis if added after spliceosome assembly has taken place. Addition of purified SR protein splicing factors restores spliceosome formation and splicing to PP1‐inhibited extracts, consistent with SR proteins being targets regulated by phosphorylation. These data extend earlier observations showing that splicing catalysis, but not spliceosome assembly, is blocked by inhibiting protein phosphatases. It therefore appears that pre‐mRNA splicing, in common with other biological processes, can be regulated both positively and negatively by reversible protein phosphorylation.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.