Photoionization of an atom A by a strong laser field in the presence of a spatially well-separated neighboring atom B is considered. The laser field frequency is assumed to lie below the ionization potential of atom A and be resonant with a dipole-allowed transition in atom B. In this situation, the ionization may occur either directly by multiphoton absorption from the laser field at the first atomic center. Or via an indirect pathway involving two-center electron-electron correlations, where the neighbor atom B is first photoexcited and, afterwards, transfers its energy upon deexcitation radiationlessly to atom A. Considering monochromatic as well as bichromatic laser fields, we study various coupling regimes of the photoionization process and identify experimentally accessible parameter domains where the two-center channel is dominant.
The interaction of atoms and molecules with quantum light as realized in cavities has become a highly topical and fast growing research field. This interaction leads to hybrid light-matter states giving rise to new phenomena and opening up pathways to control and manipulate properties of the matter. Here, we substantially extend the scope of the interaction by allowing free electrons to enter the cavity and merge and unify the two active fields of electron scattering and quantum-light-matter interaction. In the presence of matter, hybrid metastable states are formed at electron energies of choice. The properties of these states depend strongly on the frequency and on the light-matter coupling of the cavity. The incoming electrons can be captured by the matter inside the cavity solely due to the presence of the cavity. The findings are substantiated by an explicit example and general consequences are discussed.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.