OBJECTIVE:High fructose consumption contributes to the incidence of metabolic syndrome and, consequently, to cardiovascular outcomes. We investigated whether exercise training prevents high fructose diet-induced metabolic and cardiac morphofunctional alterations.METHODS:Wistar rats receiving fructose overload (F) in drinking water (100 g/l) were concomitantly trained on a treadmill (FT) for 10 weeks or kept sedentary. These rats were compared with a control group (C). Obesity was evaluated by the Lee index, and glycemia and insulin tolerance tests constituted the metabolic evaluation. Blood pressure was measured directly (Windaq, 2 kHz), and echocardiography was performed to determine left ventricular morphology and function. Statistical significance was determined by one-way ANOVA, with significance set at p<0.05.RESULTS:Fructose overload induced a metabolic syndrome state, as confirmed by insulin resistance (F: 3.6±0.2 vs. C: 4.5±0.2 mg/dl/min), hypertension (mean blood pressure, F: 118±3 vs. C: 104±4 mmHg) and obesity (F: 0.31±0.001 vs. C: 0.29±0.001 g/mm). Interestingly, fructose overload rats also exhibited diastolic dysfunction. Exercise training performed during the period of high fructose intake eliminated all of these derangements. The improvements in metabolic parameters were correlated with the maintenance of diastolic function.CONCLUSION:The role of exercise training in the prevention of metabolic and hemodynamic parameter alterations is of great importance in decreasing the cardiac morbidity and mortality related to metabolic syndrome.
The aim of this study was to investigate metabolic and cardiovascular responses to walking in fructose-fed rats. Male Wistar rats were divided into control (C), sedentary fructose (SF) and walking fructose (WF). Fructose-fed rats received D-fructose (100 g/l). WF rats walked on a treadmill at constant load (0.3 km/h) during 1 h/day, 5 days/week for 8 weeks. Measurements of triglyceride concentrations, adipose tissue and glycemia were carried out together with insulin tolerance test to evaluate metabolic profile. Arterial pressure (AP) signals were directly recorded. Baroreflex sensitivity (BR) was evaluated by the reflex tachycardia (TR) and bradycardia (BR) to AP changes. The results showed that walking decreased the adipose tissue (SF: 6.5 ± 0.4; WF: 2.8 ± 0.1; C: 3.0 ± 0.3 g), blood triglyceride levels (SF: 291 ± 6.5; WF: 150 ± 8.1; C: 103 ± 4.5 mg/dl) and increased insulin sensitivity (SF: 2.5 ± 0.2; WF: 3.3 ± 0.32; C: 4.8 ± 0.4 %/min). Baroreflex sensitivity was improved in the WF group expressed by BR (SF: 0.75 ± 0.10; WF: 1.18 ± 0.10; C: 1.5 ± 0.14 ms/mmHg) and TR (SF: 0.80 ± 0.12; WF: 1.21 ± 0.10; C: 1.35 ± 0.11 ms/mmHg), as well as when verified by the alpha index. Although the WF group showed decreased AP when compared with the SF group, the values still enhanced in relation to C rats (SF: 137 ± 2; WF: 129 ± 1; C: 115 ± 6 mmHg). Our findings allow a better understanding of the effects of walking, a low-intensity exercise training, on the hemodynamic and metabolic aspects of male rats with metabolic syndrome and indicate that walking seems to be particularly effective in treating metabolic disturbances in this model.
BackgroundThe increase in fructose consumption is paralleled by a higher incidence of metabolic syndrome, and consequently, cardiovascular disease mortality. We examined the effects of 8 weeks of low intensity exercise training (LET) on metabolic, hemodynamic, ventricular and vascular morphological changes induced by fructose drinking in male rats.MethodsMale Wistar rats were divided into (n = 8 each) control (C), sedentary fructose (F) and ET fructose (FT) groups. Fructose-drinking rats received D-fructose (100 g/l). FT rats were assigned to a treadmill training protocol at low intensity (30% of maximal running speed) during 1 h/day, 5 days/week for 8 weeks. Measurements of triglyceride concentrations, white adipose tissue (WAT) and glycemia were carried out together with insulin tolerance test to evaluate metabolic profile. Arterial pressure (AP) signals were directly recorded. Baroreflex sensitivity (BS) was evaluated by the tachycardic and bradycardic responses. Right atria, left ventricle (LV) and ascending aorta were prepared to morphoquantitative analysis.ResultsLET reduced WAT (−37.7%), triglyceride levels (−33%), systolic AP (−6%), heart weight/body weight (−20.5%), LV (−36%) and aortic (−76%) collagen fibers, aortic intima-media thickness and circumferential wall tension in FT when compared to F rats. Additionally, FT group presented improve of BS, numerical density of atrial natriuretic peptide granules (+42%) and LV capillaries (+25%), as well as the number of elastic lamellae in aorta compared with F group.ConclusionsOur data suggest that LET, a widely recommended practice, seems to be particularly effective for preventing metabolic, hemodynamic and morphological disorders triggered by MS.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.