Coronaviruses, like many animal viruses, are characterized by a restricted host range and tissue tropism. Transmissible gastroenteritis virus (TGEV), a major pathogen causing a fatal diarrhoea in newborn pig, replicates selectively in the differentiated enterocytes covering the villi of the small intestine. To investigate the molecular determinants of the infection, we characterized the surface molecule used by the virus for binding and entry into host cells. Here we report that aminopeptidase N, an ectoenzyme abundantly expressed at the apical membrane of the enterocytes, serves as a receptor for TGEV. Monoclonal antibodies were selected for their ability to block infection by TGEV of porcine cell lines. They recognized a brush-border membrane protein of M(r) 150K, which was identified as aminopeptidase N by amino-terminal sequencing. Two lines of evidence supported the view that the peptidase itself acts as a receptor. First, virions bound specifically to aminopeptidase N that was purified to homogeneity. Second, recombinant expression of aminopeptidase N conferred infectivity by TGEV to an otherwise non-permissive cell line.
SUMMARYThe antigenic structure of the peplomer glycoprotein E2 of the porcine transmissible gastroenteritis coronavirus (TGEV) was explored using a panel of 23 hybridoma antibodies (MAbs). The topography of the epitopes was established by means of a competition radioimmunoassay. Four main antigenic sites, termed A, B, C and D, were thus clearly delineated. Most of the neutralization-mediating determinants were found to cluster in the A-B area, which has been shown to be highly conserved among TGEV strains. Cooperative enhancement of binding to sites B and D was observed following attachment of MAbs relevant to site A. Additional epitopes were identified on E2 by MAbs that selectively recognized its intracellular precursor.
SUMMARYThirty-two hybridoma cell lines producing monoclonal antibodies (MAbs) against the three major structural proteins of transmissible gastroenteritis virus (TGEV) have been isolated. Radioimmunoprecipitation of intracellular viral polypeptides showed that 17 hybridomas recognized both the peplomer protein [E2, 220 × 10 3 tool. wt.
Four major antigenic sites have been delineated on the spike protein (S) of the porcine enteric coronavirus transmissible gastroenteritis virus (TGEV) in previous topological studies using monoclonal antibodies (MAbs). Correlation of these sites with the physical structure of the protein was achieved by use of different approaches. Recombinant pEX plasmids directing the synthesis of various fused S polypeptides were constructed. A hybrid protein containing nine S-specific residues (363 to 371) was shown to express site C epitopes. The other sites were localized through study of the antigenic activity of fragments generated by controlled cleavage of the native protein with different endopeptidases. Two identified cleavage products of 26K and 13K, immunoreactive to site A-B-and site D-specific MAbs respectively, could be aligned on the S primary structure according to N-terminal sequence data. This led us to propose that the major neutralization domain A-B is contained in a region of approximately 200 residues with residue 506 as its N boundary. Similarly, site D epitopes should be located within a stretch of 130residues, starting at 82 residues from the N terminus. Point mutations identified by direct RNA sequencing of neutralization-resistant mutants were consistent with the proposed location of these sites.
Down-modulation of major histocompatibility class I (MHC-I) molecules is a viral strategy for survival in the host. Myxoma virus, a member of the Poxviridae family responsible for rabbit myxomatosis, can downmodulate the expression of MHC-I molecules, but the viral factor(s) has not been described. We cloned and characterized a gene coding for an endoplasmic reticulum (ER)-resident protein containing an atypical zinc finger and two transmembrane domains, which we called myxoma virus leukemia-associated protein (MV-LAP). MV-LAP down-regulated surface MHC-I and Fas-CD95 molecules upon transfection; the mechanism probably involves an exacerbation of endocytosis and was lost when the ER retention signal was removed.
In addition, the lytic activity of MHC-I-restricted antigen-specific cytolytic T lymphocytes (CTL) against myxoma virus-infected antigen-presenting target cells was significantly reduced, revealing a strong correlation between MHC-I down-regulation by MV-LAP and CTL killing in vitro. In vivo experiments with a knockout virus showed that MV-LAP is a virulence factor, potentially involved in the immunosuppression characteristic of myxomatosis. Data bank analysis revealed that MV-LAP has homologs in herpesviruses and other poxviruses.We propose the name "scrapins" to define a new group of ER-resident surface cellular receptor abductor proteins. The down-regulation of cell surface molecules by scrapins probably helps protect infected cells during viral infections.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.