MEF2C haploinsufficiency syndrome is an emerging neurodevelopmental disorder associated with intellectual disability, autistic features, epilepsy, and abnormal movements. We report 16 new patients with MEF2C haploinsufficiency, including the oldest reported patient with MEF2C deletion at 5q14.3. We detail the neurobehavioral phenotype, epilepsy, and abnormal movements, and compare our subjects with those previously reported in the literature. We also investigate Mef2c expression in the developing mouse forebrain. A spectrum of neurofunctional deficits emerges, with hyperkinesis a consistent finding. Epilepsy varied from absent to severe, and included intractable myoclonic seizures and infantile spasms. Subjects with partial MEF2C deletion were statistically less likely to have epilepsy. Finally, we confirm that Mef2c is present both in dorsal primary neuroblasts and ventral gamma-aminobutyric acid(GABA)ergic interneurons in the forebrain of the developing mouse. Given interactions with several key neurodevelopmental genes such as ARX, FMR1, MECP2, and TBR1, it appears that MEF2C plays a role in several developmental stages of both dorsal and ventral neuronal cell types.
Defects in cholesterol synthesis result in a wide variety of symptoms, from neonatal lethality to the relatively mild dysmorphic features and developmental delay found in individuals with Smith-Lemli-Opitz syndrome. We report here the identification of mutations in sterol-C4-methyl oxidase-like gene (SC4MOL) as the cause of an autosomal recessive syndrome in a human patient with psoriasiform dermatitis, arthralgias, congenital cataracts, microcephaly, and developmental delay. This gene encodes a sterol-C4-methyl oxidase (SMO), which catalyzes demethylation of C4-methylsterols in the cholesterol synthesis pathway. C4-Methylsterols are meiosis-activating sterols (MASs). They exist at high concentrations in the testis and ovary and play roles in meiosis activation. In this study, we found that an accumulation of MASs in the patient led to cell overproliferation in both skin and blood. SMO deficiency also substantially altered immunocyte phenotype and in vitro function. MASs serve as ligands for liver X receptors α and β (LXRα and LXRβ), which are important in regulating not only lipid transport in the epidermis, but also innate and adaptive immunity. Deficiency of SMO represents a biochemical defect in the cholesterol synthesis pathway, the clinical spectrum of which remains to be defined. IntroductionCholesterol is a key component of cell membranes and lipid rafts and is the immediate precursor of steroids, vitamin D, and bile acids. Many disorders of cholesterol synthesis share common clinical features, such as abnormal morphogenesis, growth delay, and psychomotor disabilities (1). However, there are also striking differences suggesting that reduced de novo cholesterol synthesis per se may not primarily underlie some of the symptoms, including cataracts as well as skin and immune system abnormalities. Rather, recent studies implicate the accumulation of pre-cholesterol sterols and the replacement of cholesterol with some of these sterols in lipid rafts as playing a key role in the underlying pathophysiology (2). The meiosis-activating sterols (MASs) were the first group of cholesterol biogenesis intermediates that were found to have important extrahepatic functions in mammals. These include 4,4′-dimethyl-5α-cholesta-8,24-dien-3β-ol (testis meiosis-activating sterol [T-MAS]), 4,4′-dimethyl-5α-cholesta-8,14,24-trien-3β-ol (follicular fluid meiosis-activating sterols [FF-MASs]), and zymosterol. They are found in high concentration in testis and ovary and play roles in oocyte maturation and meiosis activation. The function of the MASs outside the reproductive organs is not well studied. FF-MAS is also a ligand for liver X receptors (LXRs) (3). LXR signaling is known to regulate crosstalk between inflammatory and cholesterol metabolism,
We report 24 unrelated individuals with deletions and 17 additional cases with duplications at 10q11.21q21.1 identified by chromosomal microarray analysis. The rearrangements range in size from 0.3 to 12 Mb. Nineteen of the deletions and eight duplications are flanked by large, directly oriented segmental duplications of >98% sequence identity, suggesting that nonallelic homologous recombination (NAHR) caused these genomic rearrangements. Nine individuals with deletions and five with duplications have additional copy number changes. Detailed clinical evaluation of 20 patients with deletions revealed variable clinical features, with developmental delay (DD) and/or intellectual disability (ID) as the only features common to a majority of individuals. We suggest that some of the other features present in more than one patient with deletion, including hypotonia, sleep apnea, chronic constipation, gastroesophageal and vesicoureteral refluxes, epilepsy, ataxia, dysphagia, nystagmus, and ptosis may result from deletion of the CHAT gene, encoding choline acetyltransferase, and the SLC18A3 gene, mapping in the first intron of CHAT and encoding vesicular acetylcholine transporter. The phenotypic diversity and presence of the deletion in apparently normal carrier parents suggest that subjects carrying 10q11.21q11.23 deletions may exhibit variable phenotypic expressivity and incomplete penetrance influenced by additional genetic and nongenetic modifiers.
Spondyloocular syndrome (SOS) is a rare autosomal recessive, skeletal disorder. Two recent studies have shown that it is the result of biallelic sequence variants in the XYLT2 gene with pleiotropic effects in multiple organs, including retina, heart muscle, inner ear, cartilage, and bone. The XYLT2 gene encodes xylosyltransferase 2, which catalyzes the transfer of xylose (monosaccharide) to the core protein of proteoglycans (PGs) leading to initiating the process of PG assembly. SOS was originally characterized in 2 families A and B of Iraqi and Turkish origin, respectively. Using DNA from affected members of the same 2 families, we performed whole exome sequencing, which revealed 2 novel homozygous missense variants (c.1159C > T, p.Arg387Trp) and (c.2548G > C, p.Asp850His). Our findings extend the body of evidence that SOS is caused by homozygous variants in the XYLT2 gene. In addition, this report has extended the phenotypic description of SOS by adding follow-up data from 5 affected individuals in one of the two families, presented here.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.