Rapid hydroclimatic shifts repeatedly generated centuries to millennia of extensive aridity across the headwaters of three of North America's largest river systems during the Holocene. Evidence of past lake‐level changes at the headwaters of the Snake‐Columbia, Missouri‐Mississippi, and Green‐Colorado Rivers in the Rocky Mountains shows that aridity as extensive and likely as severe as the CE 1930s Dust Bowl developed within centuries or less at ca. 9 ka (thousand years before CE 1950), and persisted across large areas of the watersheds until ca. 3 ka. Regional water levels also shifted abruptly at >11.3 and 1.8‐1.2 ka. The record of low water levels during the mid‐Holocene on the Continental Divide links similar evidence from the Great Basin and the Midwestern U.S., and shows that extensive aridity was the Holocene norm even though few GCMs have simulated such a pattern.
Monthly climatologies (1971-2000 monthly averages) for stations in the western United States, obtained from the NOAA/National Climatic Data Center (NCDC), are used to illustrate the spatial variations in the annual cycle of climate. Animated map sequences of temperature and precipitation, their average, intermonthly changes, and the local timing of annual maxima or minima provide a comprehensive spatiotemporal baseline of regional climate. The animated maps illustrate three scales of variation: 1) broadscale patterns related to the annual cycle of insolation and hemispheric-scale atmospheric circulation features; 2) mesoscale patterns related to location on the continent and the influence of specific regional circulation features like those associated with the North American monsoon; and 3) smaller-scale spatial variations, related to the mediation by local physiography of the influence of large-scale circulation. Although most western U.S. stations have temperature maxima in July, a delay occurs at stations along the West Coast and interior Washington, northern Idaho, and Montana. A seesaw pattern of precipitation maxima is evident between coastal areas (winter dominated) and the interior (summer dominated). Cluster analyses of the ratio of monthly-to-annual precipitation values for each station identify regions with similar annual cycles of precipitation. Regions of high spatial heterogeneity in the timing of when precipitation occurs include the northern Rocky Mountains, Utah, Arizona, and northwestern Montana. The superimposition of these three scales of spatial variability leads to steep gradients and, in some regions, considerable spatial heterogeneity in annual precipitation. The regional patterns of precipitation heterogeneity highlight vulnerability to drought, especially in regions of the interior west that do not have a dominant precipitation month or season.
Many studies have used observational data to explore associations between El Niño–Southern Oscillation (ENSO) and western North America (NA) hydroclimate at regional spatial scales. However, relationships between tropical Pacific sea surface temperature (SST) variability and western NA hydroclimate at local scales using reanalysis data are less understood. Here, the current understanding of relationships between large-scale tropical Pacific SST variability and western NA hydroclimate is extended to localized headwaters. To accomplish this, high-resolution reanalysis data (i.e., monthly mean surface precipitation rate, 2-m temperature, 850-mb specific humidity, and 500-mb omega) were used for gridpoint correlation analyses with Niño-3.4 SST and El Niño Modoki indices. Reanalysis time series data were provided by the National Centers for Environmental Prediction North American Regional Reanalysis (NARR) product. To validate the accuracy of NARR surface data, observational Livneh precipitation and temperature data were used. Resulting correlations between tropical Pacific indices and NARR surface precipitation and 2-m temperature are consistent with previous research both spatially and temporally, indicating that the strongest correlations occur primarily over southwestern NA during the winter (DJF). The results herein demonstrate the potential of high-resolution reanalysis data to reveal distinct correlations over topographically complex watersheds in the U.S. Intermountain West (IMW) over the recent record, 1979–2015. The use of the high-resolution NARR product as a viable option to explore western NA hydroclimate is demonstrated here.
Lake-level changes since ca. 3.6 kilo-annum (ka) at Emerald Lake in the Upper Arkansas River Basin of west-central Colorado coincide in time with changes of the opposite direction at Lake of the Woods in northwestern Wyoming. The contrast provides evidence of a multi-centennial moisture dipole across the Southern and Central Rocky Mountains' region similar to one associated with the effects of the El Niño Southern Oscillation (ENSO) on annual to decadal time scales today. Cores and ground penetrating radar (GPR) profiles from Emerald Lake show that deep-water muds accumulated as extensively across the lake basin as today at ca. 3.6-3.0 and 1.4-0.8 ka, and nearly as extensively at 2.5-1.9 ka. The extensive muds indicate episodes of high water at Emerald Lake and date to times when Lake of the Woods was low. Nearshore sand layers at Emerald Lake indicate that water levels fell during the intervening centuries, including when bristlecone pine chronologies have documented repeated multi-decadal droughts in the Upper Arkansas River Basin. Water levels were also low, based on the absence of nearshore mud accumulation, before ca. 3.6 ka, and dramatically lower (>2 m in the currently 4.5-m deep lake) before a sharp rise in water levels by ca. 5.7 ka. A basin-wide change in sediment accumulation patterns, consistent with an expansion and deepening of the lake at ca. 5.7 ka, correlates with regional cooling and similar evidence of increased effective moisture at Lake of the Woods and other sites throughout central North America. The step increase in moisture availability may relate to a global-scale reorganization of climatic patterns, which developed as the mid-and high-latitudes cooled in response to a decline in summer insolation.
[1] Spatial patterns of actual evapotranspiration (AE), potential evapotranspiration (PE), and their ratio (AE/PE) in the western United States are examined to describe the annual cycle of moisture availability. Long-term (1971Long-term ( -2000 averages of observed temperature and precipitation, and sunshine data were used to calculate AE and PE. A cluster analysis identifies regions with similar annual cycles of AE/PE. We identify three different spatial scales of variability in AE/PE: (1) broadscale patterns reflect the trade-off between winter-dominated precipitation of the Pacific Northwest and summer-dominated precipitation east of the Rocky Mountains, and the south-to-north decrease in PE related to latitudinal variations in net radiation; (2) mesoscale patterns show the influence of regional-scale features (e.g., the North American Monsoon); and (3) local-scale patterns are related to topography. Understanding the scales of effective-moisture variations is valuable from the perspective of terrestrial ecosystems and water resources management in the mostly arid western United States.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.