Kv2.2, homologous to the shab family of Drosophila voltage-gated K+ channels, was isolated from human and canine colonic circular smooth muscle-derived mRNA. Northern hybridization analysis performed on RNA prepared from tissues and RT-PCR performed on RNA isolated from dispersed and selected smooth muscle cells demonstrate that Kv2.2 is expressed in smooth muscle cells found in all regions of the canine gastrointestinal (GI) tract and in several vascular tissues. Injection of Kv2.2 mRNA into Xenopus oocytes resulted in the expression of a slowly activating K+ current (time to half maximum current, 97 ± 8.6 ms) mediated by 15 pS (symmetrical K+) single channels. The current was inhibited by tetraethylammonium (IC50 = 2.6 mM), 4-aminopyridine (IC50 = 1.5 mM at +20 mV), and quinine (IC50 = 13.7 μM) and was insensitive to charybdotoxin. Low concentrations of quinine (1 μM) were used to preferentially block the slow component of the delayed rectifier current in native colonic myocytes. These data suggest that Kv2.2 may contribute to this current in native GI smooth muscle cells.
We investigated the effect of phencyclidine (PCP) on three native delayed rectifier K+ currents and three channels cloned from canine and human circular colonic myocytes using voltage-clamp techniques. Native delayed rectifier K+ current in canine circular colon is composed of at least three components: (i) a rapidly activating, 4-aminopyridine-sensitive component (termed IdK(f)); (ii) a slowly activating, tetraethylammonium (TEA)-sensitive component (IdK(s)); and (iii) a rapidly activating, TEA-sensitive component, which has a steady-state inactivation curve shifted towards more negative potentials (IdK(n)). PCP blocked all three components with EC50 values of 45, 27 and 59 micromol L-1, respectively. Blocking was neither use-dependent nor voltage-dependent. Delayed rectifier K+ channels cloned from canine (Kv1.2, Kv1.5) and from human (Kv2.2) colon were expressed in Xenopus oocytes. PCP blocked all three currents with similar potency. In contrast, PCP (up to 10-4 mol L-1) did not reduce the magnitude of Ca2+-dependent outward current of large conductance Ca2+-activated K+ channels (BK channels).
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.