Since The New York Times published Snow Fall in 2012, media organizations have produced a growing body of similar work characterized by the purposeful integration of multimedia into long-form journalism. In this article, we argue that just as the literary journalists of the 1960s attempted to write the nonfiction equivalent of the great American novel, journalists of the 2010s are using digital tools to animate literary journalism techniques. To evaluate whether this emerging genre represents a new era of literary journalism and to what extent it incorporates new techniques of journalistic storytelling, we analyze 50 long-form multimedia journalism packages published online from August 2012 to December 2013. We argue that this new wave of literary journalism is characterized by executing literary techniques through multiple media and represents a gateway to linear storytelling in the hypertextual environment of the Web.
Receptor binding studies of 5,14-O-dimethyloxymorphone (14-methoxymetopon) in brain membranes have established its high affinity for -binding sites, but its analgesic potency far exceeds the modest increase in binding affinity relative to other opioids. The current study has established the selectivity of -ol]-enkephalin (DAMGO) showed similar efficacies, as determined by maximal stimulation, but 14-methoxymetopon was up to 65-fold more potent than DAMGO. The greatest difference was seen with mMOR-1E and the least with mMOR-1C, which displayed only a 10-fold difference. These potency differences in the stimulation of [ 35 S]GTP␥S binding far exceeded the differences in binding affinity. The differences between 14-methoxymetopon and DAMGO remained after normalizing the potency shifts based upon receptor binding affinities and varied from 1.2-fold with mMOR-1C to 21-fold for mMOR-1 and 42-fold with mMOR-1F.
The most-read story of 2014 on the website of The New York Times was an interactive news application called "How Y'all, Youse and You Guys Talk." Interactive applications may provide value to the user experience of digital media, but they cost time and money to produce. In this study, we examined five multimedia news packages that include interactive applications as part of the story presentation and asked 18 millennial tablet computer users to evaluate them. Participants said the interactive applications that were most effective in attracting and retaining their interest maintained the flow of the narrative, provided a personalized or playful alternative to the representation of information in other media, and were produced by credible media organizations that designed their apps for use on mobile devices.
Background: While chimeric antigen receptor T cells (CAR T-cells) induce dramatic remissions of refractory or recurrent B cell malignancies, the durability of these remissions is frequently limited by subsequent reduction in circulating CAR T-cells and/or by diminution of their effector function. We hypothesized that we could overcome this therapeutic limitation and increase the functional activity and longevity of CAR T-cells by selectively deriving them from virus-specific effector memory T cells. We have developed biologics we termed synTacs (artificial immunological synapse for T-cell activation), which selectively activate and expand antigen-specific CD8+ T cells in vitro and in vivo by recapitulating signals delivered at the immunological synapse. The synTacs consist of dimeric Fc domain scaffolds linking CD28- or 4-1BB-specific ligands to HLA-A2 MHC molecules covalently tethered to virus-derived peptides. Treatment of PBMCs from CMV-exposed donors with synTacs presenting a CMV-derived peptide (pp65-NLVPMVATV) induce vigorous and selective ex vivo and in vivo expansion of highly functional CMV-specific CD8+ T cells, with potent antiviral activity. We used these synTacs to selectively generate CAR T-cells from CMV-specific effector memory CD8+ T cells, which could be further expanded by restimulation with the CMV-specific synTacs. Methods: We treated PBMCs from CMV-exposed donors in media supplemented with either IL-2 or IL-7/12/15 with a synTac containing the CMV-derived pp65 peptide presented by HLA-A2 MHC molecules linked to ligands capable of stimulating CD28- or 4-1BB-dependent costimulatory pathways. PBMCs activated either with anti-CD3/CD28 or the CMV-specific synTacs were transduced with lentivirus expressing an anti-CD19 CAR and a GFP reporter gene. CMV-specific CD8+ T cells were quantified by tetramer staining and CAR T-cells were detected by GFP expression determined by flow cytometric analysis. The functional activity of the CD19 CAR T-cells was determined by a B cell-specific cytotoxic assay. Results: After 7 days, treatment of PBMCs with CMV-specific synTacs rapidly induced robust activation and >50-fold expansion of CMV-specific CD8+ T cells expressing effector memory markers. Treatment of the PBMCs with CMV-specific synTacs selectively activated CMV-specific T cells and enabled them to be specifically transduced with a CD19-specific CAR lentivirus and converted into CD19 CAR T-cells. These CMV-specific CD19 CAR T-cells displayed potent dose-responsive cytotoxic activity targeting purified primary B cells. Furthermore, these CMV-specific CD19 CAR T-cells could be selectively expanded by in vitro treatment with CMV-specific synTacs. Conclusions: SynTacs are versatile immunotherapeutics capable of selective in vitro and in vivo activation and expansion of virus-specific CD8+ T cells with potent antiviral cytotoxic activity. After selective lentiviral transduction and conversion into CD19 CAR T-cells, their co-expression of the CMV-specific T cell receptor enabled them to be potently stimulated and activated by in vitro treatment with CMV synTacs. The modular design of synTacs facilitates efficient coupling of other costimulatory ligands - such as OX40 or GITRL - or cytokines, such as IL-2, IL-7, or IL-15, to enable the selective in vivo delivery of defined costimulatory signals or cytokines to the CAR T-cells expressing CMV-specific TCR. This strategy has the potential to boost the in vivo activity of tumor-specific CAR T-cells after infusion and enable more durable and potent treatment of refractory/recurrent B cell malignancies. Disclosures Almo: Cue Biopharma: Current equity holder in publicly-traded company, Patents & Royalties: Patent number: 62/013,715, Research Funding. Goldstein:Cue Biopharma: Research Funding.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2025 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.