Water-column bacterial communities are assembled by different mechanisms at different stream network positions, with headwater communities being controlled by mass effects (advection of bacteria from terrestrial soils) while downstream communities are mainly driven by environmental sorting. Conversely, benthic biofilms are colonized largely by the same set of taxa across the entire network. However, direct comparisons of biofilm and bacterioplankton communities along whole stream
Abstract:The effects of weirs on fish and other biological communities have garnered considerable study, whereas the effects of weirs on community composition of toxic cyanobacteria have not yet been well documented. In this study, temporal and spatial variations in species composition and the abundance of potentially toxic cyanobacteria were investigated in the riverine regions of the temperate Youngsan River estuary, where two weirs have recently been constructed. Four stations were sampled 0.5 m below the surface monthly along the channel of the upper river from May 2014 to April 2015 to explore cyanobacterial composition and abundance, while physicochemical and biological parameters were measured to elucidate possible mechanisms controlling these dynamics. Two stations were located upstream at free-flowing sites, and the other stations were located downstream at impounded sites near the weirs. Twenty-eight cyanobacterial species were identified, seven of which were potentially toxic: Microcystis sp., M. aeruginosa, M. flos-aquae, Dolichospermum sp., Aphanocapsa sp., Oscillatoria sp. and Phormidium sp. Microcystis sp. was the most abundant in June 2014 at the lowest station near the weir. Meanwhile, Phormidium sp. occurred at low abundance throughout the study period, except during the winter months, when its abundance was elevated. The interactive forward selection method highlighted dissolved inorganic nitrogen and zooplankton abundance as explanatory variables for this observed variation, but their effects on cyanobacterial growth are unclear. However, temperature was the major determinant for the temporal variation in cyanobacterial populations. Cluster analysis showed that the downstream stations near the weirs had a high similarity of potentially toxic cyanobacteria. Significantly higher abundance, especially of Microcystis sp., was also recorded at the impounded sites suggesting that the presence of weirs might affect variations in toxic cyanobacterial communities.
Bioassay and gene expression experiments were conducted in order to evaluate the growth and physiology of Prorocentrum minimum isolated from a eutrophic coastal water in response to tannic acid. In the bioassay experiments, variations in abundance, chlorophyll (chl) a concentration, maximum fluorescence (in vivo Fm), and photosynthetic efficiency (Fv/Fm) were measured over the course of a seven-day incubation. Moreover, stress-related gene expression in both the control and an experimental (2.5 ppm TA treatment) group was observed for 24 h and 48 h. The molecular markers used in this study were the heat shock proteins (Hsp70 and Hsp90) and cyclophilin (CYP). The findings show that P. minimum can thrive and grow at low concentrations (<2.5 ppm) of tannic acid, and, above this concentration, cells begin to slow down development. In addition, TA concentration of 10 ppm halted photosynthetic activity. At the molecular level, treatment with tannic acid increased the expression of Hsp70, Hsp90, and CYP, and heat shock proteins are more upregulated than the cyclophilin gene. Exposure to tannic acid increased the expression of stress factors over time (48 h) by 10- to 27-fold the expression level of the control group. These results suggest that tannic acid can be used to control harmful algal blooms such as those containing P. minimum in eutrophic coastal waters.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.