In the male rat the timing of puberty can be estimated by the rapid increase in testicular weight occurring between 25-50 days of age. We found that elongated spermatids, the most mature germ cells identified using flow cytometry, were first seen at 25 days (4% of the testicular cells), while an adult proportion (63%) was attained by 45 days of age. We have shown previously that hypothalamic explants could release GnRH in a pulsatile fashion at a frequency increasing around the age of 25 days, thus consistent with the time of onset of puberty. Since pulsatile GnRH secretion could be suppressed by MK-801, a noncompetitive antagonist of N-methyl-D-aspartate (NMDA) receptor activation, we postulated that an increased activation of those receptors could be involved in the neuroendocrine mechanism that activates pulsatile GnRH secretion at the onset of puberty. Such a concept was supported by the NMDA-induced release of GnRH, which was observed using 1 mM NMDA at 25 days, while a dose of 20-50 mM was required at 15 or 50 days of age. MK-801 could provide an index of NMDA receptor activation, since the antagonistic effect of MK-801 is use dependent. This particular property was confirmed by the inability of MK-801 (5 pM) to block the depolarization (veratridine)-induced release of GnRH in the presence of 0.001 mM NMDA, while partial or complete suppression was obtained in the presence of 0.1 and 10 mM NMDA, respectively. Using explants obtained at 5, 10, 15, 20, 25, 30, 35, and 50 days of age, the lowest concentrations of MK-801 that blocked the veratridine-induced release of GnRH were, respectively, 10(7), 10(7), 10(7), 10(3), 10, 10(2), 10(4), and 10(8) pM. In contrast, there was no age-related difference in sensitivity to the inhibitory effect of Mg2+, a noncompetitive NMDA receptor antagonist which is not use dependent. The pulsatile secretion of GnRH occurred at a similar frequency at 25 and 50 days of age (4.7 and 5.4 pulses/3.5 h, respectively) but it was suppressed by a lower MK-801 concentration at 25 days (10(4) pM) than at 50 days (10(8) pM). These data indicate that the NMDA receptors involved in the control of pulsatile GnRH secretion are markedly and transiently activated around the time of onset of puberty in the male rat.
We have shown previously that N-methyl-D,L-aspartate (NMDA) and kainate, two neuroexcitatory amino acids acting through distinct receptors, may induce the release of GnRH from hypothalamic explants. However, that effect could have no physiological significance, since very high concentrations (50 mM) of NMDA and kainate were required. Here, using agents blocking the activation of receptors to neuroexcitatory amino acids, we evaluated their possible physiological involvement in the pulsatile release of GnRH from the hypothalamus of 50-day-old male rats in vitro. In control conditions (10 nM glycine and 1 mM mg2+), the release of GnRH in 7.5-min fractions collected for 2-4 h showed an obvious pulsatile pattern. The mean (+/- 1 SD) interval between pulses, identified by PULSAR program, was 34.3 +/- 11.4 min. The stimulation of GnRH release by NMDA (50 mM) added to the medium for 7.5 min could be blocked reversibly in the presence of MK-801 (100 microM) using medium without glycine or enriched with Mg2+ (2 mM). The endogenous pulses of GnRH secretion were abolished in the presence of MK-801 or using increased Mg2+ concentrations as well as in the absence of glycine. In contrast, pulsatile release of GnRH was not affected in the presence of 6,7-dinitroquinoxaline-2,3-dione (0.1 mM), a selective inhibitor of kainate and quisqualate receptors which suppressed the increase in GnRH release induced by kainate (50 mM) without affecting the response to NMDA. These data indicate that the physiological mechanism of pulsatile GnRH secretion in the hypothalamus may involve endogenous neuroexcitatory factors acting through NMDA-sensitive receptors.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.