Melanosome biogenesis and function were studied after purification of early stage melanosomes and characterization of specific proteins sorted to that organelle. Melanosomes were isolated from highly pigmented human MNT1 melanoma cells after disruption and initial separation by sucrose density gradient centrifugation. Low-density sucrose fractions were found by electron microscopy to be enriched in stage I and stage II melanosomes, and these fractions were further separated and purified by free flow electrophoresis. Tyrosinase and dopachrome tautomerase (DCT) activities were found exclusively in stage II melanosomes, even though DCT (and to some extent tyrosinase) proteins were sorted to stage I melanosomes. Western immunoblotting revealed that these catalytic proteins, as well as TYRP1, MART1, and GP100, were cleaved and inactivated in stage I melanosomes. Proteolytic cleavage was critical for the refolding of GP100 within the melanosomal milieu, and subsequent reorganization of amorphous stage I melanosomes into fibrillar, ovoid, and highly organized stage II melanosomes appears to stabilize the catalytic functions of melanosomal enzymes and allows melanin biosynthesis to begin. These results provide a better understanding of the structural features seen during melanosome biogenesis, and they yield further clues as to the physiological regulation of pigmentation.pigment ͉ melanin ͉ tyrosinase ͉ melanoma M ore than 95 distinct genes that play direct or indirect roles in mammalian pigmentation have been identified. Many of these genes encode proteins that are localized in melanosomes, specialized pigment organelles produced only by melanocytes. These gene products alter the quality or quantity of melanin produced and͞or the processing and distribution of melanosomes. The known melanosomal proteins are involved in melanogenesis as catalytic and͞or structural components. These include tyrosinase (TYR), the tyrosinase-related proteins-1 and -2 (TYRP1͞TRP1 and DCT͞TRP2, respectively; refs.
Over 125 pigmentation-related genes have been identified to date. Of those, PMEL17/GP100 has been widely studied as a melanoma-specific antigen as well as a protein required for the formation of fibrils in melanosomes. PMEL17 is synthesized, glycosylated, processed, and delivered to melanosomes, allowing them to mature from amorphous round vesicles to elongated fibrillar structures. In contrast to other melanosomal proteins such as TYR and TYRP1, the processing and sorting of PMEL17 is highly complex. Monoclonal antibody HMB45 is commonly used for melanoma detection, but has the added advantage that it specifically reacts with sialylated PMEL17 in the fibrillar matrix in melanosomes. In this study, we generated mutant forms of PMEL17 to clarify the subdomain of PMEL17 required for formation of the fibrillar matrix, a process critical to pigmentation. The internal proline/serine/threonine-rich repeat domain (called the RPT domain) of PMEL17 undergoes variable proteolytic cleavage. Deletion of the RPT domain abolished its recognition by HMB45 and its capacity to form fibrils. Truncation of the C-terminal domain did not significantly affect the processing or trafficking of PMEL17, but, in contrast, deletion of the N-terminal domain abrogated both. We conclude that the RPT domain is essential for its function in generating the fibrillar matrix of melanosomes and that the luminal domain is necessary for its correct processing and trafficking to those organelles.
scite is a Brooklyn-based organization that helps researchers better discover and understand research articles through Smart Citations–citations that display the context of the citation and describe whether the article provides supporting or contrasting evidence. scite is used by students and researchers from around the world and is funded in part by the National Science Foundation and the National Institute on Drug Abuse of the National Institutes of Health.
customersupport@researchsolutions.com
10624 S. Eastern Ave., Ste. A-614
Henderson, NV 89052, USA
This site is protected by reCAPTCHA and the Google Privacy Policy and Terms of Service apply.
Copyright © 2024 scite LLC. All rights reserved.
Made with 💙 for researchers
Part of the Research Solutions Family.